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Machine Learning Systems are Opaque
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Credit Decisions
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Why was Joe denied credit?



Machine Learning Systems are Opaque
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Why gender disparity in approvals?
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Vision: Explainable Machine Learning Systems

Reveal “meaningful information about the logic” of

the machine learnt prediction/decision model

* Enable humans + machines to make decisions together
e Build trust in and debug models

« Guard against societal harms, e.g. unfairness

« Comply with regulations, e.g. EU GDPR, US ECOA
 Applications: Finance, healthcare



Abstraction is key

Explaining property of a ML system =
identify causally influential factors +
make them human interpretable

 Causation: What are important factors causing this model property?
o Interpretation: What do these factors mean?
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Quantitative Input Influence
[Datta, Sen, Zick 2016]

How much influence do various inputs (features) have on

a given classifier’'s decision about individuals or groups?
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Key Idea | Causal Testing

Classifier

(uses only Decision
Income)

Replace feature with random values from the
population, and examine distribution over outcomes.



QII for Individual OQutcomes
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Causal Intervention: Replace feature with random values from the
population, and examine distribution over outcomes.




Challenge | Joint and Marginal Influence
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* Single inputs alone may have insignificant influence.

Observation: Similar to voting

Approach: Model influence as a cooperative game.

Use game-theoretic power indices.




Key Idea | Marginal Influence

Think of features as states in an election

What is the effect of PA after results from IN, GA,
MD are in? Win Presidency

- [INY Times Election Needle]

67% Clinton

Aggregate marginal influences using appropriate power index (e.qg.,
Shapley)




—————
Case study with Lending Club data

51-variable tree ensembles: scalable, succinct explanations
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Proxy use and indirect discrimination
[Datta, Fredrikson, Ko, Mardziel, Sen 2017]

Protected information type:

Race Proxy use
1. Strong predictor
(associated)
* Age 2. Causally affects
 Income output
« Zip-code / Credit offer? (high QII)

Example models: Tree ensembles




Model CheCkmg for Proxy Use [Ko, Mardziel, Sen, Datta, Fredrikson 2018]

* ML models are probabilistic programs

» Checking for proxy use reduced to checking a reachability property via self
composition

* Scalability improved by order of magnitude using an abstraction technique

PRISM results: runtime comparison vs. our previous
waork
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Inﬂuence—airectea exp'anations

[Leino, Sen, Li, Datta, Fredrikson 2018]

o Identify causally influential neurons in internal layers
* Give them interpretation using visualization techniques

White-box model, scalable, axiomatically
justified like the Shapley value




Why did the network classity input as sports car instead of
convertible?

VGG16 ImageNet model

Input image Influence-directed
Explanation

Uncovers high-level concepts that generalize across input instances




Abstraction is key

Explaining property of a ML system =
identify causally influential factors +
make them human interpretable
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—————
Vision: Explainable Machine Learning Systems

Reveal “meaningful information about the logic” of

the machine learnt prediction/decision model

* Enable humans + machines to make decisions together
e Build trust in and debug models

» Guard against societal harms, e.g. unfairness

o Comply with regulations, e.g. EU GDPR, US ECOA
 Applications: Finance, healthcare



Thanks!




