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Much industrial interest in deep learning
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News in the last few weeks…

How can this happen if we have 99.9% accuracy?

https://www.youtube.com/watch?v=B2pDFjIvrIU
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Deep neural networks can be fooled!

• They are unstable wrt adversarial perturbations
− often imperceptible changes to the image [Szegedy et al 2014, 

Biggio et al 2013 …]
− sometimes artificial white noise
− practical attacks, potential security risk
− transferable between different architectures
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit

Confidence    0.999964           0.99
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Nexar traffic sign benchmark

Red light classified as green with (a) 68%, (b) 95%, (c) 78% 
confidence after one pixel change.

− TACAS 2018, https://arxiv.org/abs/1710.07859

Can we verify that such behaviour cannot occur?
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This talk

• First steps towards methodology to ensure safety of 
classification decisions 
− visible and human-recognisable

perturbations: change of camera 
angle, snow, sign imperfections, ...

− should not result in class changes
− focus on individual decisions, pointwise robustness
− images, but can be adapted to other types of problems

• Towards an automated verification framework
− search: CAV 2017, https://arxiv.org/abs/1610.06940
− game: TACAS 2018, https://arxiv.org/abs/1710.07859
− global optim: IJCAI 2018, https://arxiv.org/abs/1805.02242
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Problem setting

• Assume 
− vector spaces DL0, DL1, …, DLn, one for each layer
− h : DL0 → {c1,…ck} classifier function modelling human

perception ability

• The network f : DL0 → {c1,…ck} approximates h from M 
training examples {(xi,ci)}i=1..M

− built from activation functions φ0, φ1, …, φn, one for each layer
− for point (image) x ∈ DL0, its activation in layer k is

αx,k = φk(φk-1(…φ1(x)))
− where φk(x) = σ(xWk+bk) and σ(x) = max(x,0) 
− Wk learnable weights, bk bias, σ ReLU
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Robustness

• Regularisation such as dropout improves smoothness

• Common smoothness assumption 
− each point x ∈ DL0 in the input layer has a region η around it 

such that all points in η classify the same as x

• Pointwise robustness [Szegedy et al 2014]
− f is not robust at point x if ∃y ∈ η such that f(x) ≠ f(y)

• Robustness (network property)
− smallest perturbation weighted by input distribution
− reduced to non-convex optimisation problem
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Safety of classification decisions

• Safety assurance process is complex
• Here focus on safety at a point as part of such a process

− consider region supporting decision at point x
− same as pointwise robustness… η

• But..
− what diameter for region η?
− which norm? L2, L∞ ?
− what is an acceptable/adversarial perturbation? 

• Introduce the concept of manipulation, a family of 
operations that perturb an image 
− think of scratches, weather conditions, camera angle, etc
− classification should be invariant wrt safe manipulations

x

y
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Safety verification

• Take as a specification set of manipulations and region η
− work with pointwise robustness as a safety criterion 
− focus on safety wrt a set of manipulations
− exhaustively search the region for misclassifications

• Challenges
− high dimensionality, nonlinearity, infinite region, huge scale

• Automated verification (= ruling out adversarial examples)
− need to ensure finiteness of search
− provable guarantee of decision safety if adv. example not found

• Falsification (= searching for adversarial examples)
− good for attacks, no guarantees
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Training vs testing
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Training vs testing vs verification
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Verification framework

• Size of the network is prohibitive
− millions of neurons!

• The crux of our approach
− propagate verification layer by layer: safety wrt ηk(αx,k) and Δk

implies safety wrt ηk-1(αx,k-1) and Δk-1

− reduction to finite exhaustive search of the region by 
discretisation, subject to minimality of manipulations

− implementation in SMT (counting problem in linear arithmetic)
− NB employ various heuristics for scalability

• This differs from heuristic search for adversarial examples
− no guarantee of precise adversarial examples
− no guarantee of exhaustive search even if we iterate
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CIFAR-10 example

ship                           ship truck

• 32x32 image size, 3 channels, medium size network (Conv, 
ReLU, Pool, FC, dropout and softmax)

• Working with 1st hidden layer, project back to input layer
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ImageNet example

Street sign                                    Birdhouse

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network VGG, (Conv, ReLU, Pool, FC, zero padding, 
dropout and softmax)

• Work with 20,000 dimensions (of 3m), unsafe for 2nd layer
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Yet another ImageNet example

Labrador retriever                      Lifeboat

• 224x224 image size, 3 channels, 16 layers, state-of-the-
art network, (Conv, ReLU, Pool, FC, zero padding, dropout 
and softmax)

• Work with 20,000 dimensions
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Alternative approach: reachability analysis

• Instead of relying on exhaustive search of discretized region, 
can we compute the reachable region?

• Under assumption of Lipschitz continuity
− for x ∈ η, compute maximum/minimum value of f(η)
− or maximum safe radius
− using global optimisation
− anytime fashion

• Gives provable guarantees
− best/worst case confidence values
− pointwise confidence diameter
− can average over input distribution

• Method NP-complete
− wrt the number of input dimensions, not number of neurons

• IJCAI 2018, https://arxiv.org/abs/1805.02242

x

y
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Global optimization: main idea

• Adaptive nested optimization, asymptotic convergence
− construct a series of lower and upper bounds

• K – Lipschitz constant
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MNIST example

• Take an image and select a feature within it

99.95%                             74.36% 99.98%
confidence                       lower bound                     upper bound

• Safety verification for the feature
− manipulating the feature can only reduce confidence to 74.36%
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MNIST network comparison

DNN-1
Unsafe

DNN-2
Unsafe

DNN-3
Unsafe

DNN-4
Safe

DNN-5
Unsafe

DNN-6
Safe

DNN-7
Unsafe
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• Showing pointwise confidence diameter 
• Can obtain global robustness evaluation by averaging wrt the 

test data distribution 
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Searching for adversarial examples…

• Input space for most neural networks is high dimensional 
and non-linear

• Where do we start?
• How can we apply structure to the problem?

• Image of a tree has 
4,000 x 2,000 x 3 
dimensions = 
24,000,000 
dimensions

• We would like to find a 
very ‘small’ change to 
these dimensions

TACAS 2018, https://arxiv.org/abs/1710.07859
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Feature-based exploration

• Searching by trying every combination of pixel values is 
intractable 

• We can ‘reduce’ the dimensionality of an images by 
reducing it only to its salient features

- Set of features given an 
image

- Response strength of the 
feature    (roughly how 
‘important’ it is)

- X coordinate of a keypoint

- Y coordinate of a keypoint

- Radius of a keypoint
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Feature-based representation

• Employ the SIFT algorithm to extract features
• Reduce dimensionality by focusing on salient features
• Use a Gaussian mixture model in order to assign each pixel 

a probability based on its perceived saliency
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Solution: two-player game

• Player 1 selects the feature that we will manipulate from 

• Each feature represents a possible move for player 1
• Player 2 then selects the pixels within the feature to 

manipulate
• Use Monte Carlo tree search to explore the game tree, 

while querying the network to align features
• Method black/grey box, can approximate the maximum 

safe radius and feature robustness
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Convergence (MNIST)

• Convergence of lower and upper bounds on maximum safe
radius
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Evaluating safety-critical scenarios: Nexar

• Dashboard camera images from the Nexar dataset were 
taken in order to test a safety critical situation 

• Tens of thousands of images were taken from real dash 
cams in all weather and lighting conditions

• Challenge winning network achieves 95% accuracy over 
unseen test data 
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Evaluating safety-critical scenarios: Nexar

• Using our Game-
based Monte Carlo 
Tree Search method 
we were able to 
reduce the accuracy 
of the network to 0%

• On average, each 
input took less than a 
second to manipulate 
(.304 seconds)

• On average each 
image was vulnerable 
to 3 pixel changes
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Conclusion

• Deep learning should be more critically evaluated when put 
into practice in safety- and security-critical situations

• Adversarial examples help in understanding the robustness 
of DNN decision boundaries

• Proposed first framework for safety verification of deep 
neural network classifiers
− search-based (SMT) and Monte Carlo tree search
− feature-guided exploration for fast, black/grey-box testing, 

in a game-theoretic framework
− provable guarantees for Lipschitz continuous networks

• Future work
− how best to use adversarial examples: training vs logic
− abstraction-refinement?
− probabilistic properties?
− more complex properties?



31

Acknowledgements

• My group and collaborators in this work

• Project funding
− ERC Advanced Grant
− EPSRC Mobile Autonomy Programme Grant

• See also
− www.veriware.org

− PRISM www.prismmodelchecker.org


