
Safe Reinforcement
Learning via

Formal Methods
André Platzer

Carnegie Mellon University
Joint work with Nathan Fulton

Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

Ensure the safety of Autonomous Cyber-Physical Systems.

Best of both worlds: learning together with CPS safety
• Flexibility of learning
• Guarantees of CPS formal methods
Diametrically opposed: flexibility+adaptability versus predictability+simplicity

1. Cyber-Physical Systems with Differential Dynamic Logic
2. Sandboxed reinforcement learning is provably safe

This Talk

Model-Based Verification

φ

Reinforcement Learning

Model-Based Verification

pos < stopSign

Reinforcement Learning

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Benefits:

● Strong safety guarantees
● Automated analysis

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Benefits:

● Strong safety guarantees
● Aomputational aids (ATP)

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Goal: Provably correct reinforcement learning

Benefits:

● Strong safety guarantees
● Aomputational aids (ATP)

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Goal: Provably correct reinforcement learning
1. Learn Safety
2. Learn a Safe Policy
3. Justify claims of safety

Part I: Differential

Dynamic Logic

Trustworthy Proofs for Hybrid Systems

Hybrid Programs

x := t x=x0
y=y0
z=z0
...

x=t
y=y0
z=z0
...

Hybrid Programs

a;b
a;b

a b

x := t x=x0
y=y0
z=z0
...

x=t
y=y0
z=z0
...

Hybrid Programs

?P

a;b
a;b

a b

If P is true: no change

If P is false: terminate

x := t x=x0
y=y0
z=z0
...

x=t
y=y0
z=z0
...

Hybrid Programs

?P

a;b
a;b

a b

If P is true: no change

If P is false: terminate

a* a ...a...

x := t x=x0
y=y0
z=z0
...

x=t
y=y0
z=z0
...

Hybrid Programs

a∪b
?P

a;b
a;b

a b

If P is true: no change

If P is false: terminate

a* a ...a...

x := t x=x0
y=y0
z=z0
...

x=t
y=y0
z=z0
...

Hybrid Programs

a∪b
?P

a;b
a;b

a b

If P is true: no change

If P is false: terminate

a* x’=f x=x0
...

x=F(0)
...

x=F(T)
...

⋮a ...a...

x := t x=x0
y=y0
z=z0
...

x=t
y=y0
z=z0
...

Approaching a Stopped Car

Is this property true?

Stopped CarOwn Car

[

{ {accel ∪ brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel≥0 & t≤T} }*

](pos <= stoppedCarPos)

Approaching a Stopped Car

Assuming we only accelerate when it’s safe to do so, is this property true?

Stopped CarOwn Car

[

{ {accel ∪ brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel≥0 & t≤T} }*

](pos <= stoppedCarPos)

Approaching a Stopped Car

Stopped CarOwn Car
safeDistance(pos,vel,stoppedCarPos,B)

safeDistance(pos,vel,stoppedCarPos,B) →

[

{ {accel ∪ brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel≥0 & t≤T} }*

](pos <= stoppedCarPos)

if we also assume the system is safe initially:

safeDistance(pos,vel,stoppedCarPos,B) →

[

{ {accel ∪ brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel≥0 & t≤T} }*

](pos <= stoppedCarPos)

Approaching a Stopped Car

Stopped CarOwn Car
safeDistance(pos,vel,stoppedCarPos,B)

The Fundamental Question
Why would our program not work if we have a proof?

The Fundamental Question
Why would our program not work if we have a proof?

1. Was the proof correct?

The Fundamental Question
Why would our program not work if we have a proof?

1. Was the proof correct?
2. Was the model accurate enough?

≠

The Fundamental Question
Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv2-g,t’=1]v ≥ v0 - gt ↔
… ↔
[v’:=rpv2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv2-g ≥ -g ↔
H→rp≥0

Side derivation:
(v ≥ v0 -
gt)’ ↔
...↔
...↔
...

dI Tactic:

H=rp≥0 & ra≥0
& g>0 & ...

Axioms KyX qed

ODE & Controls Tooling

Clever Bellerophon
Programs

The Fundamental Question
Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Safe RL

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv2-g,t’=1]v ≥ v0 - gt ↔
… ↔
[v’:=rpv2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv2-g ≥ -g ↔
H→rp≥0

Side derivation:
(v ≥ v0 -
gt)’ ↔
...↔
...↔
...

dI Tactic:

H=rp≥0 & ra≥0
& g>0 & ...

Axioms KyX qed

ODE & Controls Tooling

Clever Bellerophon
Programs

Part II: Justified
Speculative Control

Safe reinforcement learning in partially
modeled environments

≠

AAAI 2018

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete controlContinuous
motion

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete, non-deterministic
control

Continuous
motion

Model-Based Verification
Accurate, analyzable models often exist!

init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees
init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs
of safety specification.

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs
of safety specification

● Formal proofs mapping
model to runtime monitors

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*

How to implement?

Only accurate sometimes

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{dx’=w*y, dy’=-w*x, ...}

}*

How to implement?

Only accurate sometimes

Safe RL Contribution
Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

Safe RL Contribution
Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur

Learning to Resolve Non-determinism

Observe &
compute
reward

Act

Learning to Resolve Non-determinism

Observe &
compute
reward

accel ∪ brake U turn

Learning to Resolve Non-determinism

Observe &
compute
reward

{accel,brake,turn}

Learning to Resolve Non-determinism

⇨

Observe &
compute
reward

Policy

{accel,brake,turn}

Learning to Resolve Non-determinism

⇨

Observe &
compute
reward

(safe?)
Policy

{accel,brake,turn}

Learning to Safely Resolve Non-determinism

⇨
Observe & compute
reward

(safe?)
Policy

Safety Monitor

Useful to stay safe during learning Crucial after deployment

Learning to Safely Resolve Non-determinism

⇨
Observe & compute
reward

(safe?)
Policy

Safety Monitor

≠ “Trust Me”

Learning to Safely Resolve Non-determinism

⇨
Observe & compute
reward

(safe?)
Policy

φ

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) φ

Learning to Safely Resolve Non-determinism

⇨
Observe & compute
reward

(safe?)
Policy

φ

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) φ

(safe?)
Policy

Learning to Safely Resolve Non-determinism

⇨
Observe & compute
reward

φ

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) φ

(safe?)
Policy

Learning to Safely Resolve Non-determinism

⇨
Observe & compute
reward

φ

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) φ

What about the physical model?

⇨
Observe & compute
reward

φ

Use a theorem prover to prove:
(init→[{{accel∪brake};ODEs}*](safe)) φ

{pos’=vel,vel’=acc} ≠
(safe?)
Policy

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

Model is
inaccurate

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

Model is
inaccurate

Obstacle!

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn} Expected

Reality

Speculation is Justified

Observe &
compute
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)

Leveraging Verification Results to Learn Better

Observe &
compute
reward

{brake, accel, turn}

Use a real-valued
version of the
model monitor as a
reward signal

Safe RL: How?

Details:

☐ Detect modeled vs
unmodeled state
space correctly at
runtime.

☐ Convert monitors into
reward signals

Detecting unmodeled State Space

The ModelPlex algorithm, implemented using
Bellerophon, generates verified runtime monitors.

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P &
[b]P)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE
KeYmaera X Core Q.E.D.

Programming
Languages

Standard
Library ModelPlex

Detecting unmodeled State Space
oldPos := read_sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (∃t. model_after(t) == newPos):

No model deviation.
else:

Model deviation…?

Detecting unmodeled State Space
oldPos := read_sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (∃t. model_after(t) == newPos):

No model deviation.
else:

Model deviation…?

Detecting unmodeled State Space
oldPos := read_sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (QE(∃t. model_after(t) == newPos)):

No model deviation.
else:

Model deviation…?

Safe RL: How?

Details:

Runtime monitoring
separates modeled
from unmodeled state
space.

☐ Convert monitors into
reward signals

Safe RL: How?

Details:

Runtime monitoring
separates modeled
from unmodeled state
space.

☐ Convert monitors into
reward signals:
(ℝn→") → (ℝn→ℝ)!?

An Example
init→ [{

{?safeAccel;accel ∪ brake ∪ ?safeMaint; maintVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

An Example Monitor
init → [{

{?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = acc tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example Monitor
init → [{

{?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = accel ∧ vpost = acc tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

{?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

{?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

● Q.E. for RCF
● ODE solutions backed

by proofs

Quantitative monitor as reward signal

Safe RL: How?

Details:

Runtime monitoring
separates modeled
from unmodeled state
space.
Convert monitors into
gradients:
(ℝn→") → (ℝn→ℝ)

Safe RL: How?

Details:

Runtime monitoring
separates modeled
from unmodeled state
space.
Convert models into
gradients: ModelPlex
(ℝn→") → (ℝn→ℝ)

Conclusion
KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct?
2. Was the model accurate enough?

≠

Conclusion

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv2-g,t’=1]v ≥ v0 - gt ↔
… ↔
[v’:=rpv2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv2-g ≥ -g ↔
H→rp≥0

Side derivation:
(v ≥ v0 -
gt)’ ↔
...↔
...↔
...

dI Tactic:

H=rp≥0 & ra≥0
& g>0 & ...

Axioms KyX qed

ODE & Controls Tooling

Clever Bellerophon
Programs

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

Conclusion

=

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation

Get to here... ...from here

Conclusion

Web keymaeraX.org

Online Demo web.keymaeraX.org

Open Source (GPL) github.com/LS-Lab/KeYmaeraX-release

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation

Acknowledgments

