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Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing



Safety-Critical Systems
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"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing



This Talk

Ensure the safety of Autonomous Cyber-Physical Systems.

Best of both worlds: learning together with CPS safety

 Flexibility of learning

« Guarantees of CPS formal methods

Diametrically opposed: flexibility+adaptability versus predictability+simplicity

1. Cyber-Physical Systems with Differential Dynamic Logic
2. Sandboxed reinforcement learning is provably safe



Reinforcement Learning
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Reinforcement Learning
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Observe
Benefits:

e No need for complete model
e Optimal (effective) policies

Drawbacks:

e No strong safety guarantees

e Proofs are obtained and
checked by hand

e Formal proofs = decades-long
proof development
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Model-Based Verification Reinforcement Learning

. Goal: Provably correct reinforcement learning

1. Learn Safety
2. Learn a Safe Policy
3. Justify claims of safety

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model



Part |: Differential
Dynamic Logic

Trustworthy Proofs for Hybrid Systems
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If P is true: no change
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If P is false: terminate
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Own Car Stopped Car

Assuming we only accelerate when it’s safe to do so,l is this property true?
\

[

{ {laccel|U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)
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t
Own Car safeDistance(pos,vel,stoppedCarPos,B) Stopped Car

if we also assume the system is safe initially:

safeDistance(pos,vel,stoppedCarPos,B) -

[

{ {accel U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)
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safeDistance(pos,vel,stoppdila

{ {accel U brake}; t:=0; dl,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)



The Fundamental Question

Why would our program not work if we have a proof?



The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct?




The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct?
2. Was the model accurate enough?




The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

000000

75000

OOOOO

00000

Soundness-Critical LOCs

dl Tactic: DI Axiom:
[({x'=f&Q}|P—([?Q]P«—(Q—[{x'=f&Q}]P"))

Example:
[v'=r,v’-g,t'=1]lv 2 v, - gt

Side derivation: [v/i=r,v2-g] [t/ :=1]v’ 2 -g*t’ o
(v 2 vy - 5 >

£y’ r,ve-g 2 -g -
9 Hor 20

P

P

[ ODE & Controls Tooling ]

v
Clever Bellerophon
Programs

(& * J

(- )
o

\ )




The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X

2. Was the model accurate enough? Safe RL
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Part II: Justified
Speculative Control

Safe reinforcement learning in partially
modeled environments

AAAI 2018
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Model-Based Verification

Accurate, analyzable models often exist!

{
ﬁ?safeAccel accel U brake U }5
{pos’ = vel, vel’ = accf\\\“*\~\\\\\$

15 Contlnuous discrete, non-deterministic

motion control
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Accurate, analyzable models often exist!

formal verification gives strong safety guarantees
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{pos’ = vel,

}*]pos < stopSign
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Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
— of safety specification
e Formal proofs mapping
model to runtime monitors
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Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

How to implement?

{ N

{ ?safeAccel;accel |U|brake |U

{dx’=w*y, dy’=-w*x, ...}
}*l Y )

Only accurate sometimes
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Safe RL Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur
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Learning to Resolve Non-determinism
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Learning to Safely Reso\ve Non-determinism

Safety Monitor

Observe & compute
reward

Useful to stay safe during learning

Y
N—— A
(safe?)
Policy
N~

Crucial after deployment



Learning to Safely Resolve Non-determinism
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Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy via the model monitor.




What about the physical model?
At N

{pos’=vel,vel’=acc} #

Observe & compute
reward

brake
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brake, accel, turn
S { :}

Observe &
compute
reward

10

Model is
inaccurate

Obstacle!



What About the Physical Model?
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Speculation is Justified
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Leveraging Verification Results to Learn Better

{brake, accel, turn}

Observe &
compute
reward
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Safe RL: How?
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Detecting unmocdeled State Space

The ModelPlex algorithm, implemented using
Bellerophon, generates verified runtime monitors.
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Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (3t. model after(t) == newPos):
# No model deviation.
else:
# Model deviation..?
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Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (QE(It. model after(t) == newPos)):
# No model deviation.
else:
# Model deviation..?
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An Example: The Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(tpost >= O A @post = ACC A Vo = ACCEI Lo + VA Ppost = ACC Lo /2 + V L +P) V

(tIOost >=0 A Apost = 0OA Vpost =V /A Ppost = Vpost p) Vv Etc.



An Example: The Monitor }3

{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(tpost >= O A @post = ACC A Vo = ACCEI Lo + VA Ppost = ACC Lo /2 + V L +P) V

(tIoost >=0 A Apost = OA Voost =V A Ppost = VEpost p) Vv Etc.

Quantitative monitor as reward signal
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Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation
Web keymaeraX.org

Online Demo web.keymaeraX.org

Open Source (GPL) github.com/LS-Lab/KeYmaeraX-release
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