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Ensure the safety of Autonomous Cyber-Physical Systems.

Best of both worlds: learning together with CPS safety
• Flexibility of learning
• Guarantees of CPS formal methods
Diametrically opposed: flexibility+adaptability versus predictability+simplicity

1. Cyber-Physical Systems with Differential Dynamic Logic
2. Sandboxed reinforcement learning is provably safe

This Talk
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● Control policies are typically 
non-deterministic: answers 
“what is safe”, not “what is 
useful”

● Assumes accurate model

Model-Based Verification
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Reinforcement Learning

Observe

Act

Benefits: 

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and 

checked by hand
● Formal proofs = decades-long 

proof development

Goal: Provably correct reinforcement learning
1. Learn Safety
2. Learn a Safe Policy
3. Justify claims of safety



Part I: Differential 

Dynamic Logic

Trustworthy Proofs for Hybrid Systems
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Hybrid Programs
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If P is true: no change

If P is false: terminate
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safeDistance(pos,vel,stoppedCarPos,B) →

[

{ {accel ∪ brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel≥0 & t≤T} }*

](pos <= stoppedCarPos)

if we also assume the system is safe initially:



safeDistance(pos,vel,stoppedCarPos,B) →
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Part II: Justified 
Speculative Control

Safe reinforcement learning in partially 
modeled environments

≠ 

AAAI 2018
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Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs 
of safety specification

● Formal proofs mapping 
model to runtime monitors
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Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{dx’=w*y, dy’=-w*x, ...}

}*

How to implement?

Only accurate sometimes
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Safe RL Contribution
Justified Speculative Control is an approach 
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without 
sacrificing formal safety results

2. allows and directs speculation whenever 
model mismatches occur
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Learning to Safely Resolve Non-determinism

⇨
Observe & compute 
reward

φ

Main Theorem: If the ODEs are accurate, then 
our formal proofs transfer from the non-
deterministic model to the learned 
(deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) φ



What about the physical model?

⇨
Observe & compute 
reward

φ

Use a theorem prover to prove:
(init→[{{accel∪brake};ODEs}*](safe)) φ

{pos’=vel,vel’=acc}  ≠
(safe?) 
Policy
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Speculation is Justified

Observe & 
compute 
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)



Leveraging Verification Results to Learn Better

Observe & 
compute 
reward

{brake, accel, turn}

Use a real-valued 
version of the 
model monitor as a 
reward signal



Safe RL: How?

Details:

☐ Detect modeled vs 
unmodeled state 
space correctly at 
runtime.

☐ Convert monitors into 
reward signals



Detecting unmodeled State Space

The ModelPlex algorithm, implemented using 
Bellerophon, generates verified runtime monitors.

[x:=t]f(x) ↔ f(t)
[a;b]P     ↔ [a][b]P
[a∪b]P ↔ ([a]P & 
[b]P)
[x’=f&Q]P  → (Q → P)
...

AXIOM BASE
KeYmaera X Core Q.E.D.

Programming 
Languages

Standard 
Library ModelPlex
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# No model deviation.
else:

# Model deviation…?
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oldPos := read_sensor(GPS)
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# No model deviation.
else:

# Model deviation…?
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Details:

Runtime monitoring 
separates modeled
from unmodeled state 
space.

☐ Convert monitors into 
reward signals:
(ℝn→") → (ℝn→ℝ)!?
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}*]safe
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An Example: The Monitor
init → [{

{?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

● Q.E. for RCF
● ODE solutions backed 

by proofs

Quantitative monitor as reward signal
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Safe RL: How?

Details:

Runtime monitoring 
separates modeled
from unmodeled state 
space.
Convert models into 
gradients: ModelPlex
(ℝn→") → (ℝn→ℝ)
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KeYmaera X  + Justified Speculative Control provide strong 
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation

Get to here... ...from here



Conclusion

Web keymaeraX.org

Online Demo web.keymaeraX.org

Open Source (GPL) github.com/LS-Lab/KeYmaeraX-release

KeYmaera X  + Justified Speculative Control provide strong 
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation
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