Safe Rel

Learr

Forma

1

forcement

ING Vid

Methods

André Platzer
Carnegie Mellon University
Joint work with Nathan Fulton

Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

Safety-Critical Systems

Software Size (million Lines of Code)

Modern High-end Car

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome
Linux Kernel 2.6.0
Mars Curiosity Rover
Hubble Space Telescope
F-22 Raptor

Space Shuttle

0 10 20 30 40 50 60 70 80 90 100

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

This Talk

Ensure the safety of Autonomous Cyber-Physical Systems.

Best of both worlds: learning together with CPS safety

 Flexibility of learning

« Guarantees of CPS formal methods

Diametrically opposed: flexibility+adaptability versus predictability+simplicity

1. Cyber-Physical Systems with Differential Dynamic Logic
2. Sandboxed reinforcement learning is provably safe

Reinforcement Learning

Model-Based Verification ~ Reinforcement Learning

pos < stopSign

Model-Based Verification ~ Reinforcement Learning

\ D
pos < stopSign a

Model-Based Verification ~ Reinforcement Learning

\ Qa9
pos < stopSign a

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification ~ Reinforcement Learning

pos < stopSign n

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification ~ Reinforcement Learning
7
¢

Benefits:

e Strong safety guarantees
e Automated analysis

Model-Based Verification
- =
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

Reinforcement Learning

Model-Based Verification
- =
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model

Reinforcement Learning

Reinforcement Learning
- E Act

——l

o
Benefits: ()—G0)

© Observe

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

- —[]
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

Reinforcement Learning

&— P

Observe
Benefits:

e No need for complete model
e Optimal (effective) policies

- —[]
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

Reinforcement Learning

&— P

Observe
Benefits:

e No need for complete model
e Optimal (effective) policies

Drawbacks:

e No strong safety guarantees

e Proofs are obtained and
checked by hand

e Formal proofs = decades-long
proof development

Model-Based Verification Reinforcement Learning

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model

Model-Based Verification Reinforcement Learning

. Goal: Provably correct reinforcement learning

1. Learn Safety
2. Learn a Safe Policy
3. Justify claims of safety

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model

Part |: Differential
Dynamic Logic

Trustworthy Proofs for Hybrid Systems

Hybrid Programs

- BB

Hybrid Programs

- BB

ab

ab &——o—>

Hybrid Programs

- BB

If P is true: no change

ab

ab &——o—>

a

P

If P is false: terminate

Hybrid Programs

If P is true: no change

P

If P is false: terminate

Hybrid Programs

If P is true: no change

P

If P is false: terminate

Hybrid Programs

aub

If P is true: no change

P

If P is false: terminate

Approaching a Stopped (ar

N »
—© O—0©
Own Car Stopped Car

Is this property true?

[
{ {accel U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

Approaching a Stopped (ar

N »
—© O—0©
Own Car Stopped Car

Assuming we only accelerate when it’s safe to do so,l is this property true?
\

[

{ {laccel|U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

Approaching a Stopped (ar

t
Own Car safeDistance(pos,vel,stoppedCarPos,B) Stopped Car

if we also assume the system is safe initially:

safeDistance(pos,vel,stoppedCarPos,B) -

[

{ {accel U brake}; t:=0; {pos’=vel,vel’=accel,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

Approaching a Stopped (ar

N D
—© O—©
Own Car Stopped Car

safeDistance(pos,vel,stoppedCarPos,B)

safeDistance(pos,vel,stoppdila

{ {accel U brake}; t:=0; dl,t’=1 & vel=0 & t<T} }*

](pos <= stoppedCarPos)

The Fundamental Question

Why would our program not work if we have a proof?

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct?

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct?
2. Was the model accurate enough?

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

000000

75000

OOOOO

00000

Soundness-Critical LOCs

dl Tactic: DI Axiom:
[({x'=f&Q}|P—([?Q]P«—(Q—[{x'=f&Q}]P"))

Example:
[v'=r,v’-g,t'=1]lv 2 v, - gt

Side derivation: [v/i=r,v2-g] [t/ :=1]v’ 2 -g*t’ o
(v 2 vy - 5 >

£y’ r,ve-g 2 -g -
9 Hor 20

P

P

[ODE & Controls Tooling]

v
Clever Bellerophon
Programs

(& * J

(-)
o

\)

The Fundamental Question

Why would our program not work if we have a proof?

1. Was the proof correct? KeYmaera X

2. Was the model accurate enough? Safe RL

100000

75000

50000

00000

Soundness-Critical LOCs

dl Tactic: DI Axiom:
[({x'=f&Q}|P—([?Q]P«—(Q—[{x'=f&Q}]P"))

Example:
[v'=r,v’-g,t'=1]lv 2 v, - gt

Side derivation: [v/i=r,v2-g] [t/ :=1]v’ 2 -g*t’ o
(v 2 vy - 5 >

£y’ r,ve-g 2 -g -
9 Hor 20

P

P

[ODE & Controls Tooling]

v
Clever Bellerophon
Programs

(& * J

(-)
o

\)

Part II: Justified
Speculative Control

Safe reinforcement learning in partially
modeled environments

AAAI 2018

Model-Based Verification

Accurate, analyzable models often exist!

{?safeAccel;accel U brake U

{pos’ = vel, vel’ = acc}

}*

Model-Based Verification

Accurate, analyzable models often exist!

{7safeAcce1 accel U brake U

{pos = vel, vel’ = accf\\\“*\~\\\\\$

discrete control

I* Conhnuous
motion

Model-Based Verification

Accurate, analyzable models often exist!

{
ﬁ?safeAccel accel U brake U }5
{pos’ = vel, vel’ = accf\\\“*\~\\\\\$

15 Contlnuous discrete, non-deterministic

motion control

Model-Based Verification

Accurate, analyzable models often exist!

init - [{
{ ?safeAccel;accel U brake U
{pos’ = vel, vel’ = acc}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

{ ?safeAccel g afeTurn; turn};

{pos’ = vel,

}*]pos < stopSign

Model-Based Verification

Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
— of safety specification.

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
— of safety specification
e Formal proofs mapping
model to runtime monitors

Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

How to implement?

{ N

{ ?safeAccel;accel |U|brake |U

{pos’ = vel, vel’ = acc}

} '

Only accurate sometimes

Model-Based Verification Isn't Enough

Perfect, analyzable models don’t exist!

How to implement?

{ N

{ ?safeAccel;accel |U|brake |U

{dx’=w*y, dy’=-w*x, ...}
}*l Y)

Only accurate sometimes

Safe RL Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

Safe RL Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur

Learning to Resolve Non-determinism

Act

@.Jj}
© L/

Observe &
compute
reward

Learning to Resolve Non-determinism

accel U brakel:Jturn

%))

O}
O‘ L/

Observe &
compute
reward

Learning to Resolve Non-determinism

{accel,brake,turn}

)

O}
O‘ L/

Observe &
compute
reward

Learning to Resolve Non-determinism

)

O}
O" L/

{accel,brake,turn}

\

Observe &
compute
reward

(o [

\

olicy

Learning to Resolve Non-determinism

~ N
3 {accel,brake,turn} (| A
A = (safe?)
@ Policy
0—0@ - —

Observe &
compute
reward

Learning to Safely Reso\ve Non-determinism

Safety Monitor

Observe & compute
reward

Useful to stay safe during learning

Y
N—— A
(safe?)
Policy
N~

Crucial after deployment

Learning to Safely Resolve Non-determinism

rr//~/

Safety Monltor

AN
N——_ 7

(safe?)

\ Policy
!o N— S

Observe & compute
reward

~ ;ﬁ “Trust Me”

D,}}

Learning to Safely Resolve Non-determinism

/'T //‘/

~ TN
Q N— __
~
- (safe?)
“Illii’ Policy
) 0 N— ~

Observe & compute
reward

Use a theorem prover to prove:

(init->[{{acceluUbrake};0ODEs}*](safe)) P

Learning to Safely Resolve Non-determinism

/'T //‘/

-~ TN

3 D
Policy

'o O —

Observe & compute
reward

Use a theorem prover to prove:

(init->[{{acceluUbrake};0ODEs}*](safe)) P

Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy

Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the non-
deterministic model to the learned
(deterministic) policy via the model monitor.

What about the physical model?
At N

{pos’=vel,vel’=acc} #

Observe & compute
reward

brake

What About the Physical Model?

brake, accel, turn
3 { :}

a

Observe &
compute
reward

What About the Physical Model?

brake, accel, turn
3 { :}

a

Observe &
compute
reward

What About the Physical Model?

brake, accel, turn
3 { :}

A

Observe &
compute
reward

What About the Physical Model?

brake, accel, turn
S { :}

Observe &
compute
reward

10

Model is
inaccurate

What About the Physical Model?

brake, accel, turn
S { :}

Observe &
compute
reward

10

Model is
inaccurate

Obstacle!

What About the Physical Model?

10

{brake, accel, turn}

Observe &
compute
reward

i i

.) - . W N \

/ Expected

|~ Reality

Speculation is Justified

10

{brake, accel, turn}

Observe &
compute
reward

i
-~ —
e e
-
e

e

.) - Y

T T
e J
. . N, N 4
B \ ! '
L N Y
“ " NN i
T A - N Y
L ! / / - LY \ 3 4
{f F, i 7 -, b NN LN Y
| ;P i, LR 1 1
[] {/ e mhew
4 [v T
4 Y IS I
eality
| i 4 1l
‘n A A A IR - { ¥ [4] r 1
[N PhN NN f | Y
TR \ ., > -, O B 4
- . /
. =/)]] crash!
" L A N a -
- - # ', ¥
Py A 4
v . ™ -~ » N4y
- o #) / .
» - - - -~ ¥ e,
- b L - - - p ¥ -
- > ®
A *, 3 - - - -
* - b)
- - » » 2
» -
- - - - - - o ’

Expected

Leveraging Verification Results to Learn Better

{brake, accel, turn}

Observe &
compute
reward

10

»»»»»»»

0@ | Use a real-valued

1 version of the

- Jf 111 | model monitor as a
—7////]) | reward signal

Safe RL: How?

T
. i P . . - 4
. Ay A _— — < NN
. - ~ e T —— T,
VARV A s S T
P N \

1 Detect VS
unmodeled state
space correctly at
runtime.

[1 Convert monitors into
reward signals

Detecting unmocdeled State Space

The ModelPlex algorithm, implemented using
Bellerophon, generates verified runtime monitors.

-\-T -

g A
N oeo

- /

Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (3t. model after(t) == newPos):
No model deviation.
else:
Model deviation..?

Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (3t. model_after(t) == newPos):
No model deviation.
else:
Model deviation..?

Detecting State Space

oldPos := read _sensor(GPS)
actuate(accel)
newPos := read_sensor(GPS)
if (QE(It. model after(t) == newPos)):
No model deviation.
else:
Model deviation..?

Safe RL: How?

. | .) = . -
N S e — - NN
a I [] - rd _A-".' -l T - ."\ ",
y r . »_,--"' - . e ‘ W, % -
P A - o —) N
d s - — — i S SN o
;g L A — - " \ %

Runtime monitoring
separates
from unmodeled state
space.

[1 Convert monitors into
reward signals

Safe RL: How?

D eta i | S . p __ e - - P — . S) “u
° - P P e O e - T . " S
oA A —_ e\ .
P . - 5
AJ‘ ad - < ' w - % 5

Runtime monitoring
separates
from unmodeled state
space.

[1 Convert monitors into

reward signals:
(R"—B) — (R"—>R)!?

An Example
INit — [{
{?safeAccel;accel U brake U ?safeMaint; maintVel};

{pos’ = vel, vel’ = acc, t’=1}

}*]safe

An Example Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(tpost >= O A @post = ACC A Vo = ACC g + VA Ppose = ACC L0 ?/2 + V t o + P) V

(tpoSt >=0 A Apost = OA Vpost = V A Ppost = Vipost + n) Vv Etc.

An Example Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(tpost >= O A @posr = ACCEI A Vg = ACC Eogge + VA Doy = ACC o 2/2 +V Lo + P) V

(Cpost >= OA Apost = OA Voost =V /N Ppost = Vot T P) V Etc.

An Example: The Monitor

init — [{
{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(tpost >= O A @post = ACC A Vo = ACCEI Lo + VA Ppost = ACC Lo /2 + V L +P) V

(tIOost >=0 A Apost = 0OA Vpost =V /A Ppost = Vpost p) Vv Etc.

An Example: The Monitor }3

{?safeAccel;accel U brake U ?safeMaintain; maintainVel};
{pos’ = vel, vel’ = acc, t’=1}
}*]safe
(tpost >= O A @post = ACC A Vo = ACCEI Lo + VA Ppost = ACC Lo /2 + V L +P) V

(tIoost >=0 A Apost = OA Voost =V A Ppost = VEpost p) Vv Etc.

Quantitative monitor as reward signal

Safe RL: How?

. B # - - =~ h 1
D I | . - — T B W
/ ” P — \ -
L] v -~ P e e .- “u “
/ r o T - . e T W, % b
d p - = — .v \
o p - - . 5 \
/ & P - _ py -~ .
A P — - - \ L

Runtime monitoring
separates
from unmodeled state

space.
Convert monitors into

gradients:

(R"—B) — (R"—R)

Safe RL: How?

. + o p . ~ ~ . -
4 - -~ — - - .
D I | : d d r'.- - T . - , -
[] y - ey o~ e T " \
; P - S . ™ ‘
/ F 4 - - . - . S Y
s . . } — . \
4 . - - . .
; o - — A ™
Y A — 4 L)

Runtime monitoring
separates

from unmodeled state
space.

Convert models into
gradients: Model|Plex
(R"—B) — (R"—R)

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct?
2. Was the model accurate enough?

N .

s
C9* o0

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough?

Soundness- Critical LOCs dl Tactic: DI Axiom:

100000 [{x'=f&Q}IP—([?Q]P—(Q—[{x'=f&Q}]P")) [ODE & Controls Tooling]
75000 Example: v
[v/=rpvi-g,t’=1]v 2 v, - gt Clever Bellerophon
50000 . s .
?fe ger:]vatlon. :|> [V imriog) [t/ i=1]v! > —grts o L Prog*rams)
= 0 2_ > - P
25000 gt) " o r,vi-g 2 -g - N
Hor 20
U - [
.« .. . ed
pafrulntoationtiatontat Axioms IE» q
%@@‘ & \Q\Q < \2\%0\ Ry Q,bdz V\Oo’
< 8 N
& e RS H=r.0 & r,20 } .)
&g>0& ...

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation

\
N

Get to here...™ |_~7 ...from here

=
¢)

Conclusion

KeYmaera X + Justified Speculative Control provide strong
safety guarantees for learning-enabled CPS.

1. Was the proof correct? KeYmaera X
2. Was the model accurate enough? Justified Speculation
Web keymaeraX.org

Online Demo web.keymaeraX.org

Open Source (GPL) github.com/LS-Lab/KeYmaeraX-release

Acknowledgments

Students and postdocs of the Logical Systems Lab at Carnegie Mellon
Brandon Bohrer, Nathan Fulton, Sarah Loos, Joao Martins, Yong Kiam Tan
Khalil Ghorbal, Jean-Baptiste Jeannin, Stefan Mitsch

A. Platzer. Logical Foundations of Cyber-Physical Systems. Springer 2018]

| Part: Elementary Cyber-Physical Systems

Differential Equations & Domains s,é* e
Choice & Control \;TCT (/fl/ =

Safety & Contracts A VI | ¥ '
Dynamical Systems & Dynamic Axioms André PIatzér @3 i\:

Truth & Proof
Control Loops & Invariants
Events & Responses

©® NOoO O~ wbhH

Reactions & Delays

Part: Differential Equations Analysis Foundation.s Of
Differential Equations & Differential Invariants Cyber_PhyS|ca|

Differential Equations & Proofs
. Ghosts & Differential Ghosts
Differential Invariants & Proof Theory

e
O O =

Systems

-_—
=M

Part: Adversarial Cyber-Physical Systems
13-16. Hybrid Systems & Hybrid Games
IV Part: Comprehensive CPS Correctness) Springer

