
Machine Learning and Logic:
Fast and Slow Thinking

Moshe Y. Vardi

Rice University

Is Computer Science Fundamentally Changing?

Formal Science vs Data Science

• We are at peak hype about machine learning and big data!

• Common perception: A Kuhnian paradigm shift!

– “Throw out the old, bring in the new!”

• In reality: new scientific theories refine old ones.

– After all, we went to the moon with Newtonian Mechanics!

• My Thesis: Data science refines formal science!

1

Logic vs. Machine Learning

Daniel Kahneman, Thinking, Fast and Slow, 2011:

• Machine Learning: fast thinking, e.g., “Is this a stop sign?”

• Logic: slow thinking, e.g., “Do you stop at a stop sign?”

Example–Autonomous Vehicles: how to establish safety? [Shashua, ’17]

• Data Driven: Drive 1B miles!
• Data+Model Driven: Combine data (1M miles) with reasoning.

Grand Challenge: Combine logic with machine learning!

2

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

Boolean Logic Today: assembly language for reasoning!

3

Algorithmic Boolean Reasoning: Early History

• Newell, Shaw, and Simon, 1955: “Logic Theorist”
• Davis and Putnam, 1958: “Computational Methods in The Propositional

calculus”, unpublished report to the NSA
• Davis and Putnam, JACM 1960: “A Computing procedure for

quantification theory”
• Davis, Logemman, and Loveland, CACM 1962: “A machine program for

theorem proving”
• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

DPLL Method: Propositional Satisfiability Test

• Convert formula to conjunctive normal form (CNF)
• Backtracking search for satisfying truth assignment
• Unit-clause preference

4

Modern SAT Solving

CDCL = conflict-driven clause learning

• Backjumping

• Smart unit-clause preference

• Conflict-driven clause learning

• Smart choice heuristic (brainiac vs speed demon)

• Restarts

Key Tools: GRASP, 1996; Chaff, 2001

Current capacity: millions of variables

5

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

S
p

e
e

d
-u

p
 (

lo
g

 s
c

a
le

)

Figure 1: SAT Solvers Performance
%labelfigure

6

Applications of SAT Solving in SW Engineering

Leonardo De Moura+Nikolaj Björner, 2012: applications of Z3 at Microsoft

• Symbolic execution

• Model checking

• Static analysis

• Model-based design

• . . .

7

Verification of HW/SW systems

HW/SW Industry: $0.75T per year!

Major Industrial Problem: Functional Verification – ensuring that
computing systems satisfy their intended functionality

• Verification consumes the majority of the development effort!

Two Major Approaches:

• Formal Verification: Constructing mathematical models of systems
under verification and analzying them mathematically: ≤ 10% of verification
effort

• Dynamic Verification: simulating systems under different testing
scenarios and checking the results: ≥ 90% of verification effort

8

Dynamic Verification

• Dominant approach!

• Design is simulated with input test vectors.

• Test vectors represent different verification scenarios.

• Results compared to intended results.

• Challenge: Exceedingly large test space!

9

Motivating Example: HW FP Divider

z = x/y: x, y, z are 128-bit floating-point numbers

Question How do we verify that circuit works correctly?

• Try for all values of x and y?

• 2256 possibilities

• Sun will go nova before done! Not scalable!

10

Test Generation

Classical Approach: manual test generation - capture intuition about
problematic input areas

• Verifier can write about 20 test cases per day: not scalable!

Modern Approach: random-constrained test generation

• Verifier writes constraints describing problematic inputs areas (based
on designer intuition, past bug reports, etc.)

• Uses constraint solver to solve constraints, and uses solutions as test
inputs – rely on industrial-strength constraint solvers!

• Proposed by Lichtenstein+Malka+Aharon, 1994: de-facto industry
standard today!

11

Random Solutions

Major Question: How do we generate solutions randomly and
uniformly?

• Randomly: We should not rely on solver internals to chose input vectors;
we do not know where the errors are!

• Uniformly: We should not prefer one area of the solution space to
another; we do not know where the errors are!

Uniform Generation of SAT Solutions: Given a SAT formula, generate
solutions uniformly at random, while scaling to industrial-size problems.

12

Constrained Sampling: Applications

Many Applications:

• Constrained-random Test Generation: discussed above

• Personalized Learning: automated problem generation

• Search-Based Optimization: generate random points of the candidate
space

• Probabilistic Inference: Sample after conditioning

• . . .

13

Constrained Sampling – Prior Approaches, I

Theory:

• Jerrum+Valiant+Vazirani: Random generation of combinatorial
structures from a uniform distribution, TCS 1986 – uniform generation
in BPPΣ

p
2

• Bellare+Goldreich+Petrank: Uniform generation of NP -witnesses
using an NP -oracle, 2000 – uniform generation in BPPNP .

But: We implemented the BPG Algorithm: did not scale above 16 variables!

14

Constrained Sampling – Prior Work, II

Practice:

• BDD-based: Yuan, Aziz, Pixley, Albin: Simplifying Boolean constraint
solving for random simulation-vector generation, 2004 – poor scalability

• Heuristics approaches: MCMC-based, randomized solvers, etc. – good
scalability, poor uniformity

15

Almost Uniform Generation of Solutions

New Algorithm – UniGen: Chakraborty, Fremont, Meel, Seshia, V,
2013-15:

• almost uniform generation in BPPNP (randomized polynomial time
algorithms with a SAT oracle)

• Based on universal hashing.

• Uses an SMT solver.

• Scales to 100,000s of variables.

16

Uniformity vs Almost-Uniformity

• Input formula: ϕ; Solution space: Sol(ϕ)

• Solution-space size: κ = |Sol(ϕ)|

• Uniform generation: for every assignment y: Prob[Output = y]=1/κ

• Almost-Uniform Generation: for every assignment y:
(1/κ)
(1+ε) ≤ Prob[Output = y] ≤ (1/κ)× (1 + ε)

17

The Basic Idea

1. Partition Sol(ϕ) into “roughly” equal small cells of appropriate size.

2. Choose a random cell.

3. Choose at random a solution in that cell.

You got random solution almost uniformly!

Question: How can we partition Sol(ϕ) into “roughly” equal small cells
without knowing the distribution of solutions?

Answer: Universal Hashing [Carter-Wegman 1979, Sipser 1983]

18

Universal Hashing

Hash function: maps {0, 1}n to {0, 1}m

• Random inputs: All cells are roughly equal (in expectation)

Universal family of hash functions: Choose hash function randomly from
family

• For arbitrary distribution on inputs: All cells are roughly equal (in
expectation)

19

XOR-Based Universal Hashing

• Partition {0, 1}n into 2m cells.

• Variables: X1, X2, . . . Xn

• Pick every variable with probability 1/2, XOR them, and equate to 0/1
with probability 1/2.

– E.g.: X1 +X7 + . . .+X117 = 0 (splits solution space in half)

• m XOR equations ⇒ 2m cells

• Cell constraint: a conjunction of CNF and XOR clauses

20

SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying
theory, e.g., linear constraints, combining SAT techniques and domain-
specific techniques.

• Tremendous progress since 2000!

CryptoMiniSAT: M. Soos, 2009

• Specialized for combinations of CNF and XORs

• Combine SAT solving with Gaussian elimination

21

UniGen Performance: Uniformity

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 160 180 200 220 240 260 280 300 320

#
 o

f
S
o
lu

ti
o
n
s

Count

US
UniGen

Uniformity Comparison: UniGen vs Uniform Sampler

22

UniGen Performance: Runtime

0.1	

1	

10	

100	

1000	

10000	

100000	

ca
se
47
	

ca
se
_3

_b
14

_3
	

ca
se
10

5	

ca
se
8	

ca
se
20

3	

ca
se
14

5	

ca
se
61

	

ca
se
9	

ca
se
15

	

ca
se
14

0	

ca
se
_2

_b
14

_1
	

ca
se
_3

_b
14

_1
	

sq
ua

rin
g1

4	

sq
ua

rin
g7
	

ca
se
_2

_p
tb
_1

	

ca
se
_1

_p
tb
_1

	

ca
se
_2

_b
14

_2
	

ca
se
_3

_b
14

_2
	

Time(s)	

Benchmarks	

UniGen	

XORSample'	

Runtime Comparison: UniGen vs XORSample’

23

Are NP-Complete Problems Really Hard?

• When I was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.
• Indeed, there are SAT instances with a few hundred variables that cannot

be solved by any extant SAT solver.
• But today’s SAT solvers, which enjoy wide industrial usage, routinely

solve real-life SAT instances with millions of variables!

Conclusion We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is “easy” in practice, how can we leverage that?

• If not worst-case complexity, then what?

24

From Model-Driven Computer Science to Data-Driven
Computer Science and Back

In Summary:

• It is a paradigm glide, not paradigm shift.

• Data-driven CS refines model-driven CS, it does not replace it.

• Physicists still teach Mechanics, Electromagnetism, and Optics.

• We should still teach Algorithms, Logic, and Formal Languages.

• But we must “marry” logic and probability.

25

