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How good (robust) is your neural net?

Neural networks are not robust to input perturbations
(e.g., image rotation / change of lighting)

DRV_Cl1:right DRV_C2:right DRV_C3: right

Misclassifications in neural networks deployed in self-driving cars [1]
In each picture one of the 3 networks makes a mistake...

[1] Pei et. al., DeepXplore: Automated Whitebox Testing of Deep Learning Systems, SOSP 2017



Wanted: Automated and scalable analysis to certify realistic neural nets

Potential Benefits:
* Certify large cyber-physical systems that use the NN
*  Prove robustness of NN (beyond just finding adversarial examples)
 Learninterpretable specs of NN
* Compare NNs

*  Train NNs



Talk based on

Al%: Safety and Robustness Certification of Neural Networks with Abstract Interpretation
|EEE Oakland Security &Privacy, 2018

(Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri, V)

Differentiable Abstract Interpretation for Provably Robust Neural Networks
ACM ICML 2018
(Mirman, Gehr, V)



Problem Statement and Challenges

Given

- aneural network N

- a property over inputs @

- a property over outputs Y

check whether Vi € I.i = ¢ = N(i) = 1 holds

Challenges:
- The property ¢ over inputs usually captures an unbounded set of inputs
- Existing symbolic solutions do not scale to large networks (e.g. conv nets)

To scale:
- Need to under- or over- approximate



High Level Insight: Al for Al

Deep Neural Nets:
Affine transforms + Restricted non-linearity

+

Abstract Interpretation:
Scalable and Precise Numerical Domains



Al%: Abstract Interpretation for NNs
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Al%: Abstract Interpretation for NNs
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Al%: Abstract Interpretation for NNs
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Al%: Abstract Interpretation for NNs
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/onotope Abstract Domain
Ghorbal, Goubault, Putot, CAV'09

Exact for linear operations
Each variable (here, abstract neuron) captured in an affine form

Allows relating variables [in limited ways) through parameters (unlike Box]



/onotope Abstract Domain

If we have two (concrete) neurons n and m,
then the abstract neurons will look like:

R (] n .

>

M?r

=1
" The meaning ( y ) is a polytope
n - - centered around a," and a,”
a,  + 2 a” €;
=1

l

Example of a
concretization:




/onotope Abstract Domain

For two (concrete) neurons n and m, the abstract neurons will look like:

. : €; : noise terms ranging [-1,1] shared between abstract neurons
n = a0"+2ainel
i=1 a," : real number that controls magnitude of noise
f Closed under affine transforms, e.g., 1+ m
m = a0m+zaimel
i=1 Not closed under joins and meets, e.g..: n | m, n 2 m

The meaning ( y ] is a polytope centered around a,"* and a,™



Meaning of a zonotope

Centered means there is a center point C, where from any point Xin
the polytope, we can obtain a flipped point Y of X, where Y = 2C-X, and
Y is in the polytope and X and Y are equal distance from C.

For instance, w below is centered around C = (1,0).

For example, a point X =(2,-1) can be flipped to obtain
a point Y=2C-X =(0,1])

Y =(0,1)
center C = (1,0]

X=1(2,-1)




/onotope Operations for Neural Networks

Multiplication by a constant real-valued constant C :

k k

(a0”+2ai"6i) * C= (C*aO”+ZC*ai”6i)

=1 i=1

Adding two variables is done component-wise (abstract transformer is exact) :

k k

k
(a," + z ae) + (a," + z a™e;) = (a,"+a,™) + E(ai”+aim) * €

i=1 i=1 =1

*No need for multiplication of zonotopes



/onotope Operations for Neural Networks: join |
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Lets see how to apply the operations to analyze networks
on a simple 2 layer feed-forward network



Analysis of a single layer

Step |: compute effect of affine transform:

Affine = 4=02n+04m A b=0.17+ 0.5m




Analysis of a single layer

4 = 0.24 + 0.4 Step |: compute effect of affine transform:

\ Affine = 4=02/+04m A b=0.14+0.5m
z = ReLU(a)
. 0.2
n > i:
Step II: compute effect of RelL U :

Activation function: y = RelLU(x) = max(0, x)

b =0.11n + 0.5m 1

" 0.5 i ~

v




Analysis of a single layer

4 = 0.24 + 0.4 Step |: compute effect of affine transform:

\ Affine = 4=02/+04m A b=0.14+0.5m
z = ReLU(a)
. 0.2
n = i:
Step II: compute effect of RelL U :

faiy = ReLUY (b) o ReLU{ (a) (Affine)

% b=0.1A+05m
ReLU! (x)() = (P N {x; = 0}) U,

[x; = 0] @) f @iy <0h=#L

m > _
0.5 - Yo = { L otherwise




Analysis of a single layer

a=0.2n+ 0.4m

0.2 \

z = ReLU(a)
=

% b =011+ 0.5m

Step |: compute effect of affine transform:

Affine = 4=02n+04m A b=0.17+ 0.5m

Step II: compute effect of RelL U :

faiy = ReLUY (b) o ReLU{ (a) (Affine)

ReLUS (x)(@) = ( 1 {x; = 0}) U g
[x; = 0] @) f @iy <0h=#L

1 otherwise

-

e

Problematic: too fine-grained, loses too much precision



Step Il: Instead, design custom RelLU transtormer

a=0.2n+ 0.4m

0.2 \

z = ReLU,(a)
' — Optimal, precise, scales, can run on GPU:

z = ReLU} (a)

2 b=01n+0.57 . .
X e G = ReLU¥ (b)

In our follow up works to Al? we have designed custom transformers, making it
currently the most scalable system for analysis of deep learning



Use case of Al?: prove absence of adversarial attacks

Much recent work attacks: Goodfellow et al. (2014); Madry et al. (2018); Evtimov et al., (2017);
Athalye & Sutskever (2017); Papernot et al. (2017); Xiao et al. (2018); Carlini & Wagner (2017);

Step 1: Define adversarial region around x based on the perturbation of interest
[brightness, L., , rotations, etc). For example:

all possible perturbations

L,ball: Ball () =w |llx—yll. <}

Step 2: Attack tries to find image y in region
where NN(x] = NN(y)

Our goal: prove Step 2 never succeeds




Prove absence of brightness attack

Pn-1 Pn

°
a®

Adversarial region @,

xo = O
x; = 0.975 + 0.025¢,
X, = 0.125

33

x784 S 0938 + 0.0626784

Vi.e; € [0,1] =33

some pixels range over an
Interval now, but not all



Prove absence of brightness attack pounded

powerset of
zonotopes

Pn-1

@

Captures a set
of images
Adversarial region @,
xO == 0

x; = 0.975 + 0.025¢;
x, = 0.125

x784 S 0938 + 0.0626784

Vi.e; € [0,1] =33

some pixels range over an
Interval now, but not all



Prove absence of brightness attack

Po

Captures a set Captures all

of images ;
_ , , possible output
Adversarial region @, Output constraint ¢, vectors

xo = O xO = O
x; = 0.975 + 0.025¢, X, = 2.60 + 0.015€, + 0.023¢; + 5.181¢€, + -
X, = 0.125 X, = 4.63 — 0.005¢, — 0.006¢; + 0.023¢€, + -

-}

Xo = 0.12 — 0.125¢, + 0.102¢, + 3.012¢€, + ---

x784 - 0938 + 0.0626784
Vi.e; € [0,1] =33 Vi.e; € [0,1]

some pixels range over an
Interval now, but not all



Prove absence of brightness attack

Pn-1 Pn

@

Po

®

» - » 9

Captures a set
of images
Adversarial region @, Output constraint ¢,

o ®

Captures all
possible output
vectors

xo == O xO == O
x; = 0.975 + 0.025¢; x; = 2.60 + 0.015¢, + 0.023€; + 5.181¢€, + -+
x, = 0.125 x, = 4.63 — 0.005¢, — 0.006€; + 0.023€, + -+

-}

Xo = 0.12 — 0.125¢, + 0.102¢, + 3.012¢€, + ---

x784 - 0938 + 0.0626784
Vi.e; € [0,1] =33 Vi.e; € [0,1]

S0me pixels range over an Label i is possible iff: @, M {Vj.x; = x;} #1
Interval now, but not all



More complex perturbation: rotations

Original

N

Right Rotate
by +25°

Left Rotate
by -35°

J

Y

First time we are able to prove rotations: We can prove network classifies
any image In this adversarial region to 7/

L., and brightness adversarial regions can be exactly captured by boxes, but
boxes cannot capture rotations exactly. To verify: use refinement.



Analysis can benefit training of networks

ldea: define abstract loss to include Al, apply automatic differentiation on Al

Training Method  Accuracy % Attack Success % Certified %
Baseline 98.4 2.4 2.8
Madry et al. 98.8 1.6 11.2
DiffAl (our method) 99.0 2.8 96.4

Convolutional Network with 124,000 neurons, L with ¢ = 0.1

Differentiable Abstract Interpretation for Provably Robust Neural Networks, ICML 2018
Matthew Mirman, Timon Gehr, M.V.



Differentiable Al training scales better than all prior work

System Model #Neurons  #Weights  Train 1 Epoch (s)
[ ConvSuper ~124k ~16mill 74

: Mirman, Gehr, V :
DiffAl ICML 2018 Resnet18 ~500k ~15mill 93
ConvHuge ~500k ~65mill 142
L ~62k ~2.5mill 466

Wong et al. (2018) aree m!
Resnet ~107k ~4 2mill 1685
Wong & Kolter (2018) MNIST Conv ~4k ~10k 180
Raghunathan et al. (2018) MNIST 2 layer FFNN ~1k ~650k -
Dvijotham et al. (2018) Convnets ~21k ~650k -

» Numbers as reported by prior work and not rerun on our hardware

» When hidden unit numbers and weight numbers were included, they were
approximated using the network specifications in the paper with
over-approximations where the specifications were not complete as in Dvijotham

et al. (2018); Raghunathan et al. (2018)



summary

Certification of neural nets is important Key idea: approximate nets via Al

e
TR L

DRV _C3: right

il

DRV_C1: right DRV _C2: right

The most scalable analyzer for neural nets Applications: training, explaining
Training Accuracy Attack Certified %
m @ Method %  Success %
Rotate Rotate Baseline 98.4 2.4 2.8
by -3%° by +22° Madry et al. 98.8 16 11.2
DiffAi [our] 99.0 2.8 96.4

More at: safeal.ethz.ch
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