## Reinforcement Learning for Ethical Decision Making

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence AI, Ethics, and Society: Technical Report WS-16-02

David Abel, James MacGlashan, Michael L. Littman

RSS 2017

## My Perspective

- Morality in human autonomy is a complex philosophical problem. Do the right thing.
- Morality in machine autonomy is, for the time being, an engineering problem. Do what you are told.
- Challenges:
  - How can the system be told what to do? (HCI)
  - How can it do it? (Planning)



http://3.bp.blogspot.com/-2iAnyi0aNf4/UM5qvgDElsI/AAAAAAAAAACek/3Pnl1BctPZ8/s1600/Trolley\_1.jpg









Q: Does the Roomba owner *really* want the milk clean? (even if it destroys the robot?)



Q: What if the stakes are higher?



Q: What if the stakes are higher?

## Proposal

Artificial agents need to make decisions that involve the preferences of *other agents* 





## Proposal

Artificial agents need to make decisions that involve the preferences of *other agents* 





## Proposal

Artificial agents need to make decisions that involve the preferences of *other agents* 

Critically: preferences are hidden





#### Central Pitch

Reinforcement Learning provides a useful formalism for investigating ethical decision making.









Goal: Maximize long term expected reward





P. Stone et al. 2005

V. Mnih et al. 2015



V. Mnih et al. 2015



P. Stone et al. 2005



Sample Complexity, PAC-MDP, Bandits

Formalized as a Markov Decision Process:

- [S] A collection of states (i.e. configurations of world)





Formalized as a Markov Decision Process:

- [S] A collection of states (configurations of world)
- [A] Some actions (things the agent can do)







Formalized as a *Markov Decision Process:* 

- [S] A collection of states (configurations of world)
- [A] Some actions (things the agent can do)
- [T] Transitions between states (action effects)

Formalized as a *Markov Decision Process:* 

- [S] A collection of states (configurations of world)
- [A] Some actions (things the agent can do)
- [T] Transitions between states (action effects)
- $[\mathcal{R}]$  Rewards (what is good/bad behavior)

#### The value judgment is hidden from the agent

Critically: preferences are *hidden* 





## POMDP: Example

Partially Observable Markov Decision Process

Idea: some information about the world is hidden from the agent

## POMDP: Example

Actions: *listen*, openLeft, openRight



Idea: some information about the world is hidden from the agent

# POMDP: Example



Idea: some information about the world is hidden from the agent

#### POMDP

Partially Observable Markov Decision Process

- An MDP (States, actions, transitions, rewards)
- Observation space ( $\Omega$ ): set of possible observations (ex., tiger growl on right, tiger growl on left)
- Observation function  $(\mathcal{O})$ : probability of each obs

$$\mathcal{O} = \Pr(\omega \mid s, a), \ \omega \in \Omega$$

#### POMDP

Critically: preferences are hidden





Human Agent

#### General Pitch

- Defer major ethical components (or normative judgments) to human preference
- Using a POMDP, artificial agents ask classificatory questions where appropriate











Human Agent





Human Agent





Human Agent





33





```
# lose robot: -1 if prefer dog, -20 if prefer robot
# getdog: 10
# shortgrab: -2
# longgrab: -6
```





|                  |                        | Fire | No fire |
|------------------|------------------------|------|---------|
| POMDP solutions: | Human prefers<br>dog   |      |         |
|                  | Human prefers<br>robot |      |         |





|                  |                        | Fire           | No fire |
|------------------|------------------------|----------------|---------|
| POMDP solutions: | Human prefers<br>dog   | ask, shortGrab |         |
|                  | Human prefers<br>robot |                |         |





|                  |                        | Fire           | No fire |
|------------------|------------------------|----------------|---------|
| POMDP solutions: | Human prefers<br>dog   | ask, shortGrab |         |
|                  | Human prefers<br>robot | ask, longGrab  |         |





|                  |                        | Fire           | No fire   |
|------------------|------------------------|----------------|-----------|
| POMDP solutions: | Human prefers<br>dog   | ask, shortGrab | shortGrab |
|                  | Human prefers<br>robot | ask, longGrab  |           |





|                  |                        | Fire           | No fire   |
|------------------|------------------------|----------------|-----------|
| POMDP solutions: | Human prefers<br>dog   | ask, shortGrab | shortGrab |
|                  | Human prefers<br>robot | ask, longGrab  | shortGrab |

## Toy Dilemmas: Cake Death





Artmstrong, 2015

## Toy Dilemmas: Extensions



"ask" action is really a rich opportunity for HRI, NLP, and more!





## Toy Dilemmas: Extensions





"ask" action is really a rich opportunity for HRI, NLP, and more!





Teaching, Human delivered feedback

#### The Road Ahead

- Prior on tasks/preferences.
- Value alignment
- Bounded error POMDP solutions
- A nice formalism for grounding arguments regarding the superintelligence space (Bostrom, 2014). (Bounds on rate/maximum?)

## Summary

- Pitched Reinforcement Learning (and specifically POMDPs) as a model for investigating ethical decision making.
- Similar insight to "cooperative IRL" (<u>Hadfield-Menell</u>, Dragan, Abbeel, Russell 2016): Make task uncertainty a central part of the planning problem.
- Demonstrated on two toy ethical dilemmas:
  - https://github.com/david-abel/ethical\_dilemmas
- Highlighted open questions.