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My Perspective

* Morality In human autonomy is a complex
philosophical problem. Do the right thing.

* Morality in machine autonomy is, for the time being,
an engineering problem. Do what you are told.

e Challenges:
 How can the system be told what to do? (HCI)

* How can it do it? (Planning)



The Problem
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The Problem

Q: Does the Roomba owner really want the milk clean?
(even if it destroys the robot?)
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The Problem

Q: What if the stakes are higher?
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Q: What if the stakes are higher?
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Proposal

Artificial agents need to make decisions that
involve the preferences of other agents

| prefer....

Human Agent
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Proposal

Artificial agents need to make decisions that
involve the preferences of other agents




Central Pitch

Reinforcement Learning provides a useful
formalism for investigating ethical decision making.

Human Agent
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Reinforcement Learning

(G\Na‘d world
)




Reinforcement Learning

(e\Na@ world

Goal: Maximize long term expected reward
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Reinforcement Learning
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V. Mnih et al. 2015
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Sample Complexity,
PAC-MDP, Bandits
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Reinforcement Learning

Formalized as a Markov Decision Process:

- | S] A collection of states (i.e. configurations of
world)
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Reinforcement Learning

Formalized as a Markov Decision Process:

- |S] A collection of states (configurations of
world)

- [A] Some actions (things the agent can do)
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Formalized as a Markov Decision Process:

- |S] A collection of states (configurations of
world)

- [A] Some actions (things the agent can do)

- [ T] Transitions between states (action effects)
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Reinforcement Learning

Formalized as a Markov Decision Process:

- |S] A collection of states (configurations of
world)

- [A] Some actions (things the agent can do)
- [T] Transitions between states (action effects)

- [R] Rewards (what is good/bad behavior)
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Reinforcement Learning

The value judgment is hidden from the agent




POMDP: Example

Partially Observable Markov Decision Process

ldea: some information about the world
s hidden from the agent
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POMDP: Example

Actions: listen, openleft, openRight

http://images.clipartpanda.com http://www.baerpm.com/blog/
rainbow-with-pot-of-gold-clipart- wp-content/uploads/2012/09/
black-and-white-niBnjGKiA.qif tony the tiger-lg1.jpg

ldea: some information about the world
s hidden from the agent
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POMDP: Example

4 ) listen 4 )

http://images.clipartpanda.com/ http://www.baerpm.com/blog/
rainbow-with-pot-of-gold-clipart- wp-content/uploads/2012/09/
black-and-white-niBnjGKiA.qif tony the tiger-lg1.jpg

ldea: some information about the world
s hidden from the agent
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POMDP

Partially Observable Markov Decision Process
- An MDP (States, actions, transitions, rewards)
- Observation space (2 ): set of possible

observations (ex., tiger growl on right, tiger growl
on left)

- Observation function (): probability of each obs

O =Pr(w|s,a), wef



POMDP

Critically: preferences are hidden

Human Agent
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General Pitch

* Defer major ethical components (or normative
judgments) to human preference

* Using a POMDP, artificial agents ask classificatory
guestions where appropriate

Human Agent
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Toy Dilemmas: Burning Room




Toy Dilemmas: Burning Room
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Human Agent
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Toy Dilemmas: Burning Room
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Human Agent
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Toy Dilemmas: Burning Room

Human Agent
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Toy Dilemmas: Burning Room

J e | Human Agent
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Toy Dilemmas: Burning Room

a

# lose robot: -1 if prefer dog, -20 if prefer robot
# getdog: 10

# shortgrab: -2

# longgrab: -6
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Toy Dilemmas: Burning Room
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Fire ~ Nofire

...............................................................................................................................................................

Human prefers

POMDP . dog
solutions:  Human prefers
robot
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Toy Dilemmas: Burning Room
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Human prefers

POMDP . dog "
solutions;  Human prefers sk longGrab |
robot
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Toy Dilemmas: Burning Room
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Toy Dilemmas: Burning Room

wl“ 11-‘
@y

...............................................................................................................................................................

Human prefers

POMDP . dog
solutions: Hum?:bg;efersé ask, longGrab shortGrab
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Toy Dilemmas: Cake Death

Artmstrong, 2015
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Toy Dilemmas: Extensions

. ‘ask” actionisreally arich  :
. opportunity for HRI, NLP, and
' more! '

o
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Toy Dilemmas: Extensions

Inverse Reinforcement Learning

. "ask” actionisreally arich :
. opportunity for HRI, NLP, and
' more! '
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Teaching, Human
delivered feedback
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The Road Ahead

Prior on tasks/preferences.

Value alignment

Bounded error POMDP solutions

A nice formalism for grounding arguments

regarding the superintelligence space (Bostrom,
2014). (Bounds on rate/maximum®?)
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summary

Pitched Reinforcement Learning (and specifically
POMDPs) as a model for investigating ethical decision
making.

Similar insight to “cooperative IRL" (Hadfield-
Menell, Dragan, Abbeel, Russell 2016): Make task
uncertainty a central part of the planning problem.

Demonstrated on two toy ethical dilemmas:

https://github.com/david-abel/ethical_dilemmas

Highlighted open questions.
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