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My Perspective

2

• Morality in human autonomy is a complex 
philosophical problem. Do the right thing. 

• Morality in machine autonomy is, for the time being, 
an engineering problem. Do what you are told. 

• Challenges: 

• How can the system be told what to do? (HCI) 

• How can it do it? (Planning)



The Problem
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The Problem
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Q: Does the Roomba owner really want the milk clean? 
(even if it destroys the robot?)



The Problem
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Q: What if the stakes are higher?



The Problem

9

Q: What if the stakes are higher?
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10

Artificial agents need to make decisions that 
involve the preferences of other agents

I prefer…. 

Human Agent
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Artificial agents need to make decisions that 
involve the preferences of other agents

I prefer…. 

Human Agent

(proxy for 
societal 
values)



Proposal
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Artificial agents need to make decisions that 
involve the preferences of other agents

I prefer…. 
Critically: preferences are hidden



Central Pitch

13

Reinforcement Learning provides a useful 
formalism for investigating ethical decision making.

Human Agent



Reinforcement Learning

14

observation, reward

action

world

agent



Reinforcement Learning
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observation, reward

action

world

agent

Goal: Maximize long term expected reward



Reinforcement Learning
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V. Mnih et al. 2015

P. Stone et al. 2005
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17

V. Mnih et al. 2015

P. Stone et al. 2005

Sample Complexity, 
PAC-MDP, Bandits



Reinforcement Learning
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Formalized as a Markov Decision Process: 

- [   ] A collection of states (i.e. configurations of 
world)
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Reinforcement Learning
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Formalized as a Markov Decision Process: 

- [   ] A collection of states (configurations of 
world) 

- [   ] Some actions (things the agent can do) 

- [   ] Transitions between states (action effects) 

- [   ] Rewards (what is good/bad behavior)



Reinforcement Learning
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I prefer…. 
Critically: preferences are hidden

The value judgment is hidden from the agent



POMDP: Example
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Idea: some information about the world 
is hidden from the agent

Partially Observable Markov Decision Process



POMDP: Example
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Idea: some information about the world 
is hidden from the agent

Actions: listen, openLeft, openRightlisten

http://www.baerpm.com/blog/
wp-content/uploads/2012/09/

tony_the_tiger-lg1.jpg

http://images.clipartpanda.com/
rainbow-with-pot-of-gold-clipart-
black-and-white-niBnjGKiA.gif



POMDP: Example
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Idea: some information about the world 
is hidden from the agent

listen

http://www.baerpm.com/blog/
wp-content/uploads/2012/09/

tony_the_tiger-lg1.jpg

http://images.clipartpanda.com/
rainbow-with-pot-of-gold-clipart-
black-and-white-niBnjGKiA.gif

grrr…



Partially Observable Markov Decision Process 

- An MDP (States, actions, transitions, rewards) 

- Observation space (    ): set of possible 
observations (ex., tiger growl on right, tiger growl 
on left) 

- Observation function (   ): probability of each obs

POMDP
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⌦



POMDP
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I prefer…. 
Critically: preferences are hidden

Human Agent



General Pitch
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• Defer major ethical components (or normative 
judgments) to human preference 

• Using a POMDP, artificial agents ask classificatory 
questions where appropriate

Human Agent
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Toy Dilemmas: Burning Room
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Toy Dilemmas: Burning Room

Human Agent
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Toy Dilemmas: Burning Room

Human Agent
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Toy Dilemmas: Burning Room

Human Agent
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Toy Dilemmas: Burning Room

Human Agent
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Toy Dilemmas: Burning Room

# lose robot: -1 if prefer dog, -20 if prefer robot 
# getdog: 10 
# shortgrab: -2 
# longgrab: -6
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Toy Dilemmas: Burning Room

Fire No fire

Human prefers 
dog

Human prefers 
robot

POMDP 
solutions:
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Toy Dilemmas: Burning Room

Fire No fire

Human prefers 
dog ask, shortGrab

Human prefers 
robot

POMDP 
solutions:
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Toy Dilemmas: Burning Room

Fire No fire

Human prefers 
dog ask, shortGrab shortGrab

Human prefers 
robot ask, longGrab

POMDP 
solutions:
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Toy Dilemmas: Burning Room

Fire No fire

Human prefers 
dog ask, shortGrab shortGrab

Human prefers 
robot ask, longGrab shortGrab

POMDP 
solutions:



Toy Dilemmas: Cake Death
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Artmstrong, 2015



41

Toy Dilemmas: Extensions

“ask” action is really a rich 
opportunity for HRI, NLP, and 

more!
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Toy Dilemmas: Extensions

“ask” action is really a rich 
opportunity for HRI, NLP, and 

more!

Inverse Reinforcement Learning

Teaching, Human 
delivered feedback



The Road Ahead
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• Prior on tasks/preferences. 

• Value alignment 

• Bounded error POMDP solutions 

• A nice formalism for grounding arguments 
regarding the superintelligence space (Bostrom, 
2014). (Bounds on rate/maximum?)



Summary
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• Pitched Reinforcement Learning (and specifically 
POMDPs) as a model for investigating ethical decision 
making. 

• Similar insight to “cooperative IRL” (Hadfield-
Menell, Dragan, Abbeel, Russell 2016): Make task 
uncertainty a central part of the planning problem. 

• Demonstrated on two toy ethical dilemmas: 

https://github.com/david-abel/ethical_dilemmas 

• Highlighted open questions.


