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Abstract—Technological advances have brought about ma-
chines capable of beating humans in chess or, more recently,
in an even more complex game of Go. While those milestones
might seem abstract to many, self-driving cars or medical robots
provide an example which should not be ignored. Given that
human lives are at stake, it is important to consider whether (or to
what degree) we can trust autonomous systems. As a step towards
addressing that question, [5] presented an automated verification
framework for reasoning about cognitive processes and trust in
stochastic multi-agent systems. The formalism captures human
notion of trust, defined as a subjective evaluation of agent A on
agent B’s ability to complete a task, which may lead to a decision
of A to rely on B. A probabilistic rational temporal logic PRTL∗

was introduced, which extends PCTL∗ with novel operators that
let one reason about mental attitudes and express trust-related
concepts such as competence, disposition or dependence. In this
work, we illustrate usefulness of the framework on the Robotic
Waiter Example, which investigates human-robot interaction in a
real-world setting.

I. INTRODUCTION

Recent years have seen rapid progress of autonomous
robotics, with self-driving cars, home assistive robots or un-
manned aerial vehicles entering the fabric of our society. An
important question arising in that context is whether we are
safe in presence of this new technology. A recent fatal collision
involving a Tesla car in autonomous mode [6] shows the
potential dangers of deploying autonomous robots and vehicles
on a wide scale. Importantly, the driver’s over-reliance on
the car’s software has been identified as the main cause of
the crash, thereby providing us with motivation for studying
cognitive trust between humans and robots.

In most general terms, trust is understood as a subjective
evaluation of a trustor on a trustee about something in par-
ticular, e.g., completion of a task [4]. In this work, we focus
on relationships between humans and autonomous systems
and are primarily interested in cognitive trust, which reflects
aspects such as human motivation, goals and intentions, as
well as the social context. We follow [1] and view trust as a
complex mental attitude that is relative to a set of goals and
expressed in terms of beliefs, which in turn influence decisions
about agent’s future behaviour.

The framework for reasoning about cognitive trust com-
prises a model called Autonomous Stochastic Multi-Agent
System (ASMAS), which consists of a set of agents, each
equipped with a set of local actions, interacting within an
environment. It evolves by transitioning between states ac-
cording to the transition function, where each transition is
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Fig. 1. Cognitive transitions of robotic waiter

caused by agents selecting their local actions independently
and executing them simultaneously. A distinctive aspect of
ASMAS is that it combines the temporal dimension, i.e.,
actions of agents in a physical space described above, with the
cognitive dimension, which concerns agents’ cognitive (i.e.,
mental) changes. In ASMAS, the two dimensions coexist, and
each transition of the system belongs to one of them.

II. MODELLING THE ROBOTIC WAITER EXAMPLE

We present the details of our framework with help of a
simple example involving interaction between humans and
robots, which we refer to as Robotic Waiter Example.

A. Setting

Our scenario, inspired by Rong Heng Seafood Restaurant
in Singapore [2], is set in a restaurant, in which customers
are served by autonomous robots. Each guest of the restaurant
may order an expensive meal or a cheap meal, which then
enters the queue of orders, according to the priority assigned
to it by the waiter. Depending on its position in the queue, the
dish might arrive on time, in which case the waiter receives a
bonus proportional to the value of the meal, or late, in which
case the waiter receives no bonus. Some waiters are fair, and
assign the same priority to all the orders they take, but others
are greedy and assign higher priority to more expensive dishes,
in order to maximise their gratification.

We aim to reason about the degree of trust a customer has
in the robotic waiter to deliver their meal on time, and how
robot’s mental state, i.e., being fair or greedy, affects their
behaviour.

B. The Model

We now give a more detailed overview of the main compo-
nents of ASMAS and develop a model of the Robotic Waiter
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Fig. 2. Temporal dimension corresponding to greedy waiter, x ∈ {5, 7, 9}

Example step by step.
1) Cognitive state: We represent agents’ mental attitudes

by equipping each of them with a set of possible goals
and a set of possible intentions. In our model of Robotic
Waiter Example, there are two agents: Charlie (the customer)
and Rob (robotic waiter). For simplicity, we only consider
the Rob’s cognitive processes. His set of possible goals is
GoalRob = {short-term profit, long-term profit, reputation},
and the set of possible intentions is IntRob = {fair, greedy}.
In general, goals are high-level, abstract entities and represent
the desires of an agent, while intentions are more concrete and
often realised as means of achieving a given set of goals.

While sets GoalA and IntA of agent A are static, in a
sense that they do not change throughout the execution of
a system, the dynamic nature of agents’ mental attitudes is
captured by their cognitive state, consisting of a set of goals
(a subset of GoalA) and a single intention (an element of
IntA). Figure 1 illustrates possible cognitive transitions (i.e.,
changes of cognitive state) of Rob.

Finally, we note that, since our work focuses on agents’
mental processes, we assume that cognitive state determines
agents’ behaviour in temporal dimension. In the Robotic
Waiter Example, this is realised by associating each inten-
tion with an action strategy. We now extend our model
to include temporal actions of Charlie and Rob. Following
Rob’s cognitive transitions, Charlie performs their temporal
action, one of expensive, cheap, corresponding to ordering
expensive or cheap meal, respectively. Afterwards, Rob assigns
priority to the order, by performing one of three actions:
highPriority, midPriority or lowPriority, each of which results
in a probabilistic transition to one of two states, depending on
whether the meal arrives on time or late. Figure 2 illustrates the
unfolding of the system when Rob is greedy, i.e., from states
s5, s7, s9. His action strategy is represented in the figure by the
probability value next to each of his actions. The probability
values in the figure can be statistically inferred from past data.
Similarly, Figure 3 shows how the system evolves when Rob
is fair.

2) Cognitive mechanism: Note that there are subsets of
GoalRob which are not included in Figure 1. Some of them,
such as {short-term profit, long-term profit}, are inconsistent,
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Fig. 3. Temporal dimension corresponding to fair waiter, y ∈ {4, 6, 8}

while others, e.g., {reputation}, are omitted for simplicity.
Formally, possible goal or intention changes of a given agent
A are specified by the legal goal function goalA and the legal
intention function intA. We refer to a pair 〈goalA, intA〉 as
the cognitive mechanism of agent A. Using abbreviations from
Figure 1, the cognitive mechanism of Rob is:

goalRob(s0) = {stp, ltp, stp+rep},
intRob(sx) = {greedy, fair},

where x ∈ {1, 2, 3}.
3) Cognitive strategy: Analogously to action strategies in

temporal dimension, agents use cognitive strategies to deter-
mine what mental changes to perform for a given execution
history. For example, the following intention strategy:

πi
Rob(s0s1) = 〈greedy 7→ 1〉,
πi
Rob(s0s2) = 〈fair 7→ 1〉,
πi
Rob(s0s3) = 〈greedy 7→ 1/2, fair 7→ 1/2〉,

indicates that Rob is greedy when it aims to profit in the short
term, fair, when it aims to profit in the long term, and greedy
or fair, with equal probabilities, when it aims to profit in the
short term and retain its reputation.

4) Partial observability: An important notion, inherent in
the semantics of ASMAS, is partial observability. It arises
due to the nature of cognitive state of an agent, which is
generally not observable to other agents. For instance, in
the Robotic Waiter Example, Charlie does not know the
goals and intention of Rob. Formally, we say that Charlie’s
observation cannot distinguish states s1, s2 and s3. However,
we assume that agents can observe the number of states during
a given execution (in other words, they observe that transition
happened, but they may not know what that transition was).
Therefore, even though Charlie cannot tell states s4, . . . , s9
apart, he can differentiate them from states s1, s2, s3. On the
other hand, Rob can observe its own cognitive changes and so
its observations are unique for all states.

5) Preference functions: In order to reason formally about
a given ASMAS, one must quantify the likelihood of different
paths in the system, which can be achieved by defining
a probability space on the set of all paths. In ASMAS,



nondeterminism in temporal dimension is resolved by our
assumption that cognitive state induces an action strategy
for each agent, as we saw for the waiter in our example.
In cognitive dimension, nondeterminism is resolved by each
agent’s preference functions, which represent prior knowledge
one agent has about another.

For example, Charlie might have experienced that, when
he is served by Rob, expensive dishes usually arrive on
time, but cheap meals are frequently late. Charlie knows that
waiters aiming for short-term profit are always greedy (i.e., his
intention preference function over Rob – or any other robotic
waiter – on state s1 gives ipCharlie,R1(s1) = 〈greedy 7→ 1〉).
Similarly, he knows that waiters aiming for long-term profits
are always fair (ipCharlie,R1(s2) = 〈fair 7→ 1〉) and waiters
aiming for short-term profit and reputation are sometimes
fair, and sometimes greedy (ipCharlie,R1(s3) = 〈fair 7→
1/2, greedy 7→ 1/2〉). Charlie therefore suspects that Rob
is aiming for short-term profit, but he cannot exclude the
possibility of Rob aiming for short-term profits and reputation.
His goal preference function on state s0 is gpCharlie,R1(s0) =
〈stp 7→ 4/5, stp+rep 7→ 1/5〉, where the values can be ob-
tained by statistical inference from Charlie’s past experience.

6) Beliefs: In partially observable systems, belief is often
introduced to deal with agents’ uncertainty about the current
state of the system. Intuitively, belief expresses what agent
thinks the current state of the execution is, and can be
concretely represented as a probability distribution over states
of the system. In ASMAS, beliefs of each agent are strongly
related to their preference functions. For instance, assuming
the preference functions defined above, after the first transition,
Charlie’s belief would be 〈s1 7→ 4/5, s3 7→ 1/5〉, and after the
second transition – 〈s5 7→ 4/5, s8 7→ 1/10, s9 7→ 1/10〉.

7) Iterated model variant: Finally, we briefly describe a
possible extension of our scenario, which we call the Iterated
Robotic Waiter Example. It involves introducing additional
transitions to the existing model, so that the customer may
order as many meals as they wish, as long as each new
order comes after the previous order has arrived. Furthermore,
following the delivery of an order, the waiter may change its
goals and/or intentions. The extra transitions would therefore
originate in the states which are terminal in the current model,
and target each of states s4, . . . , s9, corresponding to various
cognitive states of the waiter. Extending the example in this
way enables one to consider how trust between agents changes
as a result of their interaction.

C. Expressing trust properties

To reason formally about properties of a given ASMAS,
we use Probabilistic Rational Temporal Logic (PRTL∗), which
extends the well-known probabilistic temporal logic PCTL∗

[3] with cognitive and trust operators. Rather than giving
full syntax and formal semantics of the language (we refer
interested readers to [5]), we describe the intuitive meaning
of selected operators and example formulas expressed in it.
Throughout this section, φ denotes a state formula, whereas
ψ denotes a path formula.

The first operator, GAφ, expresses that φ holds in the future
regardless of agent A changing its goals. For example:

• GwaiterP
≤0.93onT ime – “Regardless of the waiter

changing his goals, the probability of the meal arriving
on time is no greater than 90%”.

Similarly, IAφ expresses that it is possible to achieve φ by
changing agent A’s intention. We may use it as follows:

• IcustomerGwaiterP
≥0.53onT ime – “The customer can

change their intention, so that, regardless of the waiter
changing his goals, the probability of the meal arriving
on time is at least 50%”.1

Next, B./q
A φ, called the belief operator, states that agent A

believes φ with probability in relation ./ with q and can be
used as follows:

• B≥0.5
customer2(greedywaiter → 2greedywaiter) – “The

customer’s belief that, once the waiter becomes greedy,
he will remain greedy forever, is at least 50%”.

Finally, we have two trust operators, CT./q
A,Bψ and DT./q

A,Bψ.
The first one, called competence trust operator, expresses that
agent A trusts agent B with probability in relation ./ with q
on its capability of completing the task ψ. For example:

• CT≥0.7
customer,waiter2(expMeal → P≥0.93onT ime) –

“The customer’s trust in the waiter’s capability of en-
suring that the meal will arrive on time with probability
at least 90% is greater or equal to 70%”.

Second, DT./q
A,Bψ, referred to as the disposition trust operator,

expresses that agent A trusts agent B with probability in
relation ./ with q on its willingness to do the task ψ We
may combine belief and trust operators in the following way:

• B≥0.8
waiterDT

≥0.7
customer,waitergreedywaiter – “The waiter’s

belief that the customer has at least 70% trust in him
being greedy is at least 80%”.

We note that the Robotic Waiter Example has been modelled
using an extension of the PRISM model checker, which
supports partially observable systems [7]. Even though the tool
does not support PRTL∗ as the specification language, some
properties may be verified by adapting the model and using
PRISM’s property specification language.

III. CONCLUSION

We have presented the overview of the concepts underlying
Autonomous Stochastic Multi-Agent Systems and given an in-
sight into Probabilistic Rational Temporal Logic by modelling
the Robotic Waiter Example and considering its properties.
The basic setting we considered in this paper allowed us to
highlight the most important notions inherent in ASMAS.
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