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Abstract. We are witnessing a huge growth in popularity of wearable and im-
plantable devices equipped with sensors that are capable of monitoring a range of
physiological processes and communicating the data to smartphones or to med-
ical monitoring devices. Applications include not only medical diagnosis and
treatment, but also biometric identification and authentication systems. An impor-
tant requirement is personalisation of the devices, namely, their ability to adapt
to the physiology of the human wearer and to faithfully reproduce the character-
istics in real-time for the purposes of authentication or optimisation of medical
therapies. In view of the complexity of the embedded software that controls such
devices, model-based frameworks have been advocated for their design, develop-
ment, verification and testing. In this paper, we focus on applications that exploit
the unique characteristics of the heart rhythm. We introduce a hybrid automata
model of the electrical conduction system of a human heart, adapted from Lian
et al [8], and present a framework for the estimation of personalised parameters,
including the generation of synthetic ECGs from the model. We demonstrate the
usefulness of the framework on two applications, ensuring safety of a pacemaker
against a personalised heart model and ECG-based user authentication.

Recent technological advances have spurred a huge growth in apps and wearables for
use in health monitoring. They employ a multiplicity of noninvasive sensors, e.g. ac-
celerometers and miniature cameras, that can read physiological indicators, wirelessly
send data to smartphones and analyse it not only to record trends (e.g. fitness bands), but
also to support decision making for diagnosis and intervention. The success in minia-
turisation of electronics has led to novel variants of traditional medical devices being
introduced on the market, such as leadless cardiac pacemakers that can be implanted
inside the human heart (e.g. Nanostim) and implantable glucose monitors that transmit
data to a wristwatch to alert the wearer about any undesirable trends (e.g. Minimed).
Applications are not limited to the medical field, and include also emerging technolo-
gies for biometric user identification and security, such as wristbands that periodically
check the electrocardiogram (ECG) of the user to produce a template authentication
signal (e.g. the Nymi band).

An important requirement for wearables is their personalisation, namely, the ability
for the device to adapt to the physiology of the human wearer based on the person’s
individual characteristics. Personalisation is typically achieved via an appropriate pa-
rameterisation of a model of the physiological process, through parameter estimation
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and parameter synthesis techniques. Automation of personalised delivery of medical
treatment is a major challenge; for example, rate-adaptive pacemakers are able to vary
the rate of pacing depending on the activity and age of the patient [6], but insulin pumps
still rely on human supervision. Another important role of personalised devices is in de-
vice safety assurance, where they can be used to faithfully reproduce the unique char-
acteristics of the wearer in real-time for the purposes of testing.

Undoubtedly, personalised medical wearable and implantable devices are an im-
portant step towards achieving personalised healthcare. However, major advances are
necessary to realise this vision, ranging from technological (miniaturisation, low-power
circuits), software technologies (design automation, code generation, integration), to
regulatory and legal frameworks (FDA approval, certification). This paper is concerned
with model-based design and verification techniques for ensuring safety and effective-
ness of personalised devices based on the bioelectrical activity of the heart.

We focus on the hybrid automata framework for closed-loop quantitative verifica-
tion of cardiac pacemakers introduced in [4,7]. This was extended in [5] with techniques
to automatically synthesise optimal timing delays to minimise energy consumption, and
in [2] with a hardware-in-loop simulator to evaluate embedded pacemaker software on
low-power hardware. However, personalisation was not supported.

In this paper, we extend the framework of [4,7] as follows. We introduce a new hy-
brid heart model encoded in Simulink/ Stateflow and develop techniques to personalise
the model through parameter estimation based on ECG data. We implement methods
to produce synthetic ECGs that are characteristic for the given individual, and also to
compare different ECG patterns. We consider two applications: verification of safety
properties for a pacemaker against a personalised heart model, and biometric identifica-
tion based on matching the wearer’s signature with ECG data acquired for recognition.
Further details on the methods and results are provided in the technical report [1].

1 Heart Model and Personalisation
We define a new heart model that includes the key components of the electrical con-
duction system of the human heart (Fig. 1) and is a hybrid automata translation of the
model in [8].
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Fig. 1: Heart model.

The model can reproduce ante-
grade conduction (green arrows in the
figure), arising when a stimulus is
generated by the sinoatrial (SA) node
and is propagated towards the ven-
tricle passing through atrium and the
atrio-ventricular (AV) node. The im-
pulse can also start from the ventricle (either intrinsically by component VRG or arti-
ficially by the pacemaker) and propagate in the opposite direction (retrograde conduc-
tion, red arrows). The transmission of cardiac waves between the atrium and ventricle
is mediated by the AV node component (AVJ) and by intermediate conduction nodes
(AVJOut, RAConductor and RVConductor). The model can reproduce, among others,
ectopic beats (through components SANodeEctopic and VRGEctopic) and the collision
of cardiac waves leading to fusion beats. The artificial pacemaker [3] is connected to



the atrium and ventricle, and can both sense and stimulate them by delivering electrical
impulses. An important feature of the model is the ability to generate synthetic ECG
signals, which are used for parameter estimation and authentication. An ECG signal
can be broken into five different waves, namely P, Q, R, S and T. Each wave is a simple
bell-shaped curve which we reproduce in the synthetic signal by associating events in
the heart model with Gaussian functions.
Estimation from ECG data. To achieve a personalised model, we need to estimate pa-
rameter values so that the synthetic ECG is close to the input signal. The first steps
are filtering and processing of the signal and detection of the ECG waves (Fig. 2a).
Detected peak locations, widths and amplitudes can be directly mapped to some pa-
rameters of the model, e.g. the SA node frequency, overall AV conduction time and
ventricular refractory time. Instead, some other parameters that cannot be inferred in
this way are estimated using a Gaussian process optimisation (GPO) approach. Specif-
ically, we seek to minimise the statistical distance between the input signal and the
synthetic signal generated by the model with the parameters sampled in the GPO loop.
In order to compute the distance, the signals are mapped into a single (statistical) ECG
waveform centred around the R wave (the highest peak, see Fig. 2b).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−100

0

100

200

300

400

Time (s) 

V
ol

ta
ge

 (
m

V
) 

 

 

ECG R S T Q P

(a)

0
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Phase (radians) 

N
or

m
al

iz
ed

 v
ol

ta
ge

 

 

 

SD
Mean

−π π

(b)

Fig. 2: Processed signal and detected peaks (a). Statistical ECG waveform (b).

2 Applications and Discussion
Pacemaker Verification. We study two properties related to two common heart condi-
tions: bradycardia, i.e. slow heart rate, and AV block, i.e. conduction defect in the AV
node. For the first property we query the probability that bradycardia episodes never oc-
cur, i.e. that the time between two consecutive ventricular events is always below some
threshold. The second property requires correct conduction of the AV node, i.e. that the
time between two consecutive atrial and ventricular events always lies in a given inter-
val. Table 1 shows the results of the probabilistic verification for these properties on a
healthy heart, a heart with arrhythmia (bradycardia for the first property and AV block
for the second), and the same defective heart but with the pacemaker attached.

Property Healthy Arrhythmia With Pacemaker

P=?G
<60000(V get⇒ F<1100V get) 0.99997± 0.0012 0.360607± 0.000015 1− 0.00003

P=?G
<60000(Aget⇒ F [100,200]V get) 0.946454± 0.0005 0.0 + 0.000005 0.875494± 0.0008

Table 1: Results of pacemaker verification. Aget and V get indicate the presence of an
atrial and ventricular beat, respectively.

Note that the pacemaker can correct the two defective dynamics, since it ensures that
the first property holds with probability 1 and the second with probability above 0.87.



Authentication. We show how the synthetic ECG generated by the personalised model
can be used as a template for authentication purposes. This is based on computing its
distance with the recognition ECG acquired for the identification. If the obtained score
is small enough (e.g. not exceeding 50% of the score obtained in the estimation phase),
the authentication is successful. Fig. 3a shows an example of successful identification
when the ECGs for model estimation and authentication come from the same patient1,
while Fig. 3b shows how authentication failed with a signal from a different patient2.
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(a) Successful. Distance: 0.42
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Fig. 3: Matching synthetic and recognition ECGs for authentication.

Discussion. In this work, we presented methods to derive personalised heart models
from data and showed their usefulness in the safety verification of pacemaker devices
and in the ECG-based authentication. Besides enabling formal verification and synthe-
sis [4,2], code generation and modularity, our formal model-based framework is suffi-
ciently general to support, at the same time, other kinds of physiological systems and
medical devices. This would enable improvement of the authentication performance by
combining the ECG with other biometrics (e.g. fingerprints or iris) [9], and ultimately
verification of the collective behaviour of multiple interconnected devices in a closed-
loop with a highly-personalised model of the human physiological system.
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