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Abstract—Rate-adaptive pacemakers make use of sensors in
order to automatically adjust the pacing rate according to the
metabolic needs of the patient, thus overcoming the limitation of
fixed-rate pacemakers that cannot ensure an adequate heart beat
in cases of varying physical, mental or emotional activity. This
feature significantly improves the quality of life of patients with
chronotropic incompetence, i.e. whose heart is unable to increase
its rate as the activity increases.

We develop a formal model of a rate-adaptive pacemaker
based on hybrid automata that explicitly includes sensors for
rate control. In particular, we model the VVIR pacemaker with
a QT interval sensor, a highly specific metabolic sensor that
can sense the exercise activity level, based on the fact that
physical (and mental) stresses shorten the QT interval, in turn
requiring an increased heart rate. We implement the QT interval
sensor through a runtime ECG detection algorithm and validate
our model with patient data, showing that the simulated VVIR
pacemaker is able to successfully regulate a Bradycardia ECG
signal and produce a correctly paced heart.

The validated rate-adaptive pacemaker is plugged into the
model-based framework introduced in [8], which enables rigorous
and quantitative verification of closed-loop patient-device systems
described as hybrid automata, and supports multiple heart
and pacemaker models in a modular way. We demonstrate the
usefulness of the framework by performing in silico experiments
to demonstrate the correct functioning of rate modulation under
different activity levels. Our framework has the potential to
reduce the need for exercise testing with real patients.

I. INTRODUCTION

Cardiac pacemakers have revolutionised everyday life for
more than 40, 000 people in England. Having a pacemaker
fitted is now the most common type of cardiac surgery per-
formed in the UK. Recent advancements in pacemaker design
mean that quality of life is significantly improved, successfully
delivering the essential and regular electric impulses required
by the heart to keep the body alive.

The cardiac pacemaker is a small electrical device that uses
electrodes embedded into the heart tissue to stimulate specific
parts of the organ with a voltage, causing a heartbeat. In this
study the VVIR pacemaker (where the ventricle is sensed and
paced, and the rate adapts according to the physical activity of
the patient) will be simulated. Depending on the location and
frequency of the stimulations, the pacemaker may increase,
decrease or stabilise the heart rate. A particularly slow resting
heart rate (less than 60 bpm) is known as bradycardia and a
particularly fast resting heart rate (greater than 100 bpm) is
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known as tachycardia. However, even a normal heart will not
pace at a constant rate all day. The effect of exercise on heart
rate is common knowledge, but early pacemakers did not ap-
preciate this and paced at a constant rate. Consequently, quality
of life was poor for patients and exercise was impossible.

One of the first rate-adaptive pacemakers was patented in
1981 and implemented the automatic threshold tracking [6]
algorithm. Since then a number of different methods have
been developed for adapting the pacing rate, including body
motion, minute ventilation and QT interval [3]. Designing
cardiac pacemakers is a time-consuming process, which re-
quires rigorous methodologies to guarantee their safety through
providing software quality assurance for embedded software.
The particular challenge of rate-adaptive pacemakers is the
need to ensure the correct functioning of rate modulation under
different activity levels, which is typically achieved through
exercises with real patients.

In this paper, we develop a formal model of a rate-
adaptive pacemaker based on hybrid automata that explicitly
includes sensors for rate control. The developed pacemaker
model serves as a plug-in for the model-based framework for
quantitative verification of closed-loop patient-device systems
introduced in [8]. The framework, developed in Simulink
in modular fashion, supports multiple heart and pacemaker
models based on timed and hybrid automata, and enables the
automated verification of properties such as “the pacemaker
can correct faulty heart by maintaining the rhythm of 60-
120 beats per minute”. This paper focuses on extending the
framework through providing novel functionality of in silico
experiments to analyse rate modulation under different activity
levels, with the aim to reduce the need for exercise testing with
real patients.

We focus here on the VVIR pacemaker with a QT interval
sensor, a highly specific metabolic sensor that can sense the
exercise activity level, but the framework is sufficiently general
to admit other types of pacemakers. The QT sensor measures
the time difference between the Q wave and the T wave in the
electrocardiogram (ECG) (see Fig.1). The VVIR pacemaker
utilises the fact that physical (and mental) stresses shorten
the QT interval, in turn requiring an increased heart rate. We
implement the QT interval sensor through a runtime ECG
detection algorithm and validate our model with patient data.
We show that the simulated VVIR pacemaker is able to
successfully regulate a bradycardia ECG signal and produce
a correctly paced heart for a range of in silico induced activity
levels, and scenarios including both healthy and faulty heart,
and young and old patients. This demonstrates the usefulness
of the framework to pacemaker developers in providing safety
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Fig. 1: Electrocardiogram.

assurance for their embedded software.

The specific contributions of this paper are:

• We develop a formal model of a VVIR pacemaker.

• We implement an ECG detection algorithm that mod-
els the functioning of the QT sensor.

• We perform extensive parametric analysis for iden-
tifying the parameter ranges that ensure the correct
functioning of the pacemaker.

• We validate our modelling framework with real ECG
data.

The paper is organized as follows. In Section II we present
the results of the paper. In Section III we describe the mod-
elling framework and also the ECG detection algorithm. In
Section IV we give conclusions and discuss future work.

A. Related Work

Pacemaker software has been modelled and analysed using
a number of approaches that employ formal methods. In [22],
a dual-chamber pacemaker is modelled as a timed automaton,
based on specifications provided by Boston Scientific, and
verified using UPPAAL against a simple random heart model.
Luu et al. [32] develop a real-time formal model for a
pacemaker and verify it with the PAT model checker. Networks
of timed automata are employed in the Virtual Heart Model
[19]–[21], [29] and hybrid automata are used in the model
of [4], [34], both analysed through simulation. Macedo et al.
[26] develop and analyse a concurrent and distributed real-
time model for pacemakers through a pragmatic incremental
approach using VDM and scenarios. Gomes et al. [13] present
a formal specification of the pacemaker using the Z notation
and employ theorem proving, whereas Mert et al. [28] use
Event-B and the ProB tool to validate their models.

Several works formulate heart models, but composition
with pacemakers is not studied. In [14], [24], the authors de-
velop a model of the cardiac conduction system that addresses
the stochastic behaviour of the heart, validated via simulation.

However, the hybrid behaviour of the heart is not considered.
Grosu et al. [16] carry out automated formal analysis of a
realistic cardiac cell model, and Grosu et al. [17] propose a
method to learn and to detect the emergent behaviour (i.e. the
spiral formation) that may lead to the onset of a ventricular
fibrillation.

The modeling of the rate adaptive pacemaker has received
limited attention in the verification community. In [31] and
[28] the authors consider only the accelerometer-based pace-
maker, just providing high-level specifications of the modula-
tion mechanism. We instead develop concrete and executable
models for both the QT sensor and the pacemaker component
responsible for rate adaptation.

Related research also involves the definition of algorithms
for the integration of signals coming from multiple sensors.
Shin et al. develop a fuzzy algorithm that takes the inputs from
the motion and the respiratory rate sensor in order to adapt the
pacing rate to the physical activity of the patient. Amigoni et
al. [2] use a multi agent-based cooperation mechanism to adapt
the pacing rate of the patient based on the QT interval.

II. RESULTS

We develop a formal model of a VVIR pacemaker and
validate it on real patient data (see Sect. II-E). The pacemaker
model is plugged into the model-based framework introduced
in [8], which we enhance with the functionality to provide
in silico experimentation aimed at demonstrating the correct
functioning of rate modulation under different activity levels.
We perform extensive parametric analyses (Sect. II-B) in order
to study the behaviour of the pacemaker model under multiple
QT interval (QTI) lengths and firing rates of the sinus node
(SA node). This allows us to distinguish the parameter regions
under which the pacemaker correctly operates from those
where phenomena of sensor-induced tachycardia occur.

We model two different kinds of clinical conditions, cor-
responding to subjects with a healthy SA-node and with a
form of chronotropic incompetence known as Type II AV
block [11] (Sect. II-A), and we simulate the effects of an
implanted pacemaker in both patients. Our results mainly focus
on the latter class of patients, for which we show that any
attempt to use a fixed-rate device fails in providing an adequate
heart rate. In addition, we demonstrate the effectiveness of
the derived rate-adaptive pacemaker model compared to the
fixed-rate (VVI) pacemaker model over two scenarios: at a
constant metabolic demand (Sect.II-C), where the VVIR model
is proven to give robust responses to the detected QTIs; and
by simulating the typical activity rates of both young and old
patients during exercise (see Sect. II-D), which is commonly
done in clinical practice to test and regulate pacemaker devices.

We used real ECG data from bradycardia patients both
to derive a relationship, used in our VVIR implementation,
between QTI length and heart rate by means of non-linear
regression analysis; and to validate our VVIR model over
real ECG signals (see Sect. II-E). We are able to show that
our pacemaker implementation can correctly regulate not just
sporadic bradyarrhythmia events, but also signals characterized
by a constant low heart rate.

We implemented the VVIR pacemaker as a component
of the model-based framework of [8], using Simulink and
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Fig. 2: Comparison of action potential curves in atrium (solid
green line), in ventricle (solid blue line), and in ventricle under
the simulation of a Type II AV block (dashed red line). In the
latter case, only one half of the beats in the atrium (simulated
at 100 BPM) reaches the ventricle.

a discrete-time simulation semantics. We considered a sim-
ulation step of 3.7 ms, yielding a path length of 16217
for a one-minute simulation, which is sufficient to capture
the physiological behaviour of the heart. Every one-minute
simulation took approximately 15 seconds on a 2.4 GHz Intel
Core i5 CPU with 16GB of memory.

A. Simulation of AV block

Rate-adaptive pacemakers are mainly designed for patients
with chronotropic incompetence [11], i.e. whose heart is unable
to increase its rate as the intensity of activity increases. In
order to test the effectiveness of our pacemaker model in this
disease, we reproduce a so called Type II AV block [18], a
defect in the atrioventricular node which intermittently fails to
conduct P waves to the ventricle, resulting in a regular drop of
ventricle beats. Figure 2 shows how the AV block affects the
action potential in the ventricle. Results, obtained at a fixed
rate of SA node stimulation of 100 BPM, highlight how the
defective conduction leads to the loss of one half of the beats
that would normally be delivered to the ventricle by a healthy
AV node.

B. Parametric analysis under multiple QTIs

We perform extensive parametric analyses in order to study
the behaviour of the pacemaker model under 23 different
QTI lengths and 12 different firing rates of the SA node. In
particular, we evaluate the total number of ventricular beats
and the number of paced beats in one minute simulation, and
compare the scenario of functional AV node against the Type II
AV block. Even if the implantation of a pacemaker is clearly
not necessary for a healthy individual, we are interested in
testing our implementation under different sensor inputs, also
in healthy conditions.

In our model, the length of a detected QTI directly affects
the adaptive pacing rate, and specifically is used to compute the
so-called Lower Rate Interval (TLRI), i.e. the pacemaker pa-
rameter indicating the longest period between two consecutive

ventricular beats, used to impose the minimum heart rate. We
consider the following law that relates QTI lengths and heart
rate, suggested by Sarma et al. [30] in their re-evaluation of
the standard Bazett’s formula [5]:

RR(QT) = − log ((a− QT)/b)

k
(1)

where a, b and k have been estimated through non-linear
regression as detailed in Sect. II-E; QT is the QTI length;
and RR is the RR interval length (the distance between two R
peaks, see Fig. 1), which expresses the heart rate and is used
to update TLRI.

Results have been obtained after 552 simulations and are
illustrated in Figure 3. The analysis of the total ventricular
beats (V beats, Fig. 3 (a) and (b)) clearly shows a partition
of the parameter space, approximately determined by the
negative-slope diagonal crossing the x-y plane in the 3d plot.
For each SA rate, this diagonal suggests an ideal lower bound
for the QTI length.

Below this threshold, we observe quite an irregular pattern,
characterized by a ventricular rate constantly higher than
the SA rate, and such discrepancy is amplified as the QTI
decreases. This behaviour can be classified as a Sensor-Induced
Tachycardia (SIT) [7], [23], which generally occurs in adaptive
pacemakers when the malfunctioning of the sensors leads
to inappropriately fast pacing rate. In this case, the VVIR
pacemaker wrongly detects a short QTI and adapts the pacing
rate to values that are much higher than those needed by the
actual demand (here determined by the SA node frequency).
Hence, it fires an excessive number of paced beats to modulate
the heart rate according to the (wrong) QTI. Indeed, we can
observe the same partition of the parameter space in plots (c)
and (d) of Fig. 3, showing the pacing frequency in the ventricle.
Here, the region outlined by the QTI lengths below the ideal
threshold is characterized by the highest pacing rates. Note
that the erroneous behaviour of the pacemaker at short QTIs is
mitigated in the AV block scenario, where the faulty AV node
reduces the number of beats conducted to the ventricle, and
thus the effect of sensor-induced tachycardia is less evident.
In fact, the maximum ventricular rate is 164 BPM, obtained
with a SA rate of 110 BPM and with the smallest QTI length
considered (360 ms), while in the healthy case the extreme
value is 202 BPM, with a SA rate of 120 BPM and QTI length
of 360 ms.

On the other hand, if for each SA rate appropriate QTIs are
considered (above the ideal lower bound), we observe a regular
pattern in the number of ventricular beats. With a healthy
AV node, they increase linearly in the number of SA beats,
thus reproducing a correct conduction system which is not
affected by wrong QTI detections. Contrarily, in the case of
Type II AV block, the frequency in the ventricle grows linearly
before reaching a final plateau, highlighting how, in a faulty
conduction system, the number of lost beats increases with
the SA rate. From Fig. 3 (c), we can further observe that, with
appropriately detected QTI lengths and functional AV node,
the VVIR pacemaker practically does not pace the ventricle
at all, because of the correct functioning of the heart. On the
other hand, as visible in plot (d), in the AV block scenario
the pacemaker needs to provide additional beats in order to
overcome the conduction defect, except for limited regions of
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(a) V beats, Normal AV node
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(b) V beats, Type II AV block
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(c) Paced V beats, Normal AV node
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(d) Paced V beats, Type II AV block

Fig. 3: Changes in the number of ventricular beats (z-axis) over multiple QTIs (x-axis) and SA node firing frequencies (y-axis).
(a) and (c): simulation under normal AV conduction; (b) and (d): simulation under Type II AV block; (a) and (b): total number
of ventricular beats; (c) and (d): number of paced beats.

the parameter space characterized by a low number of paced
beats: with high SA frequencies and long QTI lengths, where
the rate of conducted beats is anyway higher than the rate
imposed by the corresponding TLRI; and with SA rates that
are low enough to be successfully delivered to the ventricle
with correctly detected QTIs.

For assessing the behaviour of the pacemaker device at
fixed pacing rates, we analyse in Figure 4 individual contours
of the above 3d plots, taken at fixed QTI lengths. In particular,
we consider QTIs of 400, 430 and 460 ms, leading (according
to Eq. 1) to TLRI values of 615, 758 and 1000 ms, in
turn forcing a minimum heart rate of 97, 79 and 60 BPM
respectively.

In Fig. 4 (a), we observe that, with a healthy AV node
and long QTI, the ideal behaviour is obtained, for which

the ventricular rate is the same as in the SA node. On the
other hand, in the Type II AV block, the same QTI length
cannot accommodate SA frequencies higher than 110 BPM,
thus limiting the applicability of the corresponding TLRI
during physical activity. As discussed before, the phenomenon
of sensor-induced tachycardia occurs at SA rates lower than
80 BPM with a QTI length of 430 ms, and it is even more
critical for a QTI of 400 ms where it can be observed for any
SA frequency below 105 BPM. Besides leading to undesirable
high rates, the TLRI resulting from the detection of short
QTIs is still not enough to ensure an adequate number of
ventricular beats in the AV block scenario (Fig. 4 (b)), where
the maximum total number of beats is limited to 115 BPM.

Therefore, the conservative strategy of choosing long
TLRIs (fixed, or as the result of long QTI detections) is more
effective in both classes of patients. Indeed, the shorter the
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Fig. 4: Effects of fixed pacing rates with healthy AV node (a), and with AV block (b). The number of ventricular beats against
different SA node frequencies are taken from Fig. 3 at fixed QTIs (400, 430 and 460 ms). The dashed black curves indicate the
ideal behaviour with equal number of beats in the SA node and in the ventricle.

60 70 80 90 100 110 120
60

70

80

90

100

110

120

SA beats [BPM]

V
 b

ea
ts

 [B
P

M
]
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Fig. 5: Behaviour of the VVIR pacemaker compared to the
fixed rate (TLRI = 1000 ms) VVI pacemaker (red curve).
The dashed curve shows the ideal behaviour of the conduction
system. The number of beats in the ventricle in the first (green
line) and in the second (blue line) minute of simulation with
adaptive pacing are obtained at constant SA rate.

QTI length is, the wider is the range of SA frequencies under
which we experience SIT. However, results clearly evidence
that, with a faulty conduction system, there is no unique pacing
rate able to deliver the correct number of beats to the ventricle
for the considered spectrum of SA rates (65-120 BPM), and
consequently for this class of patients the implantation of rate-
modulated pacemakers appears mandatory.

C. Rate modulation under constant metabolic demand

We evaluate the performance of our implementation of
VVIR pacemaker under the AV block scenario and when the
heart is subject to a constant metabolic demand, here simulated
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Fig. 6: Dynamics of rate modulation during a two-minutes
simulation at constant SA rate of 80 (blue line), 100 (green)
and 120 (red) BPM. Circles indicates time points where the
TLRI is updated.

through a constant SA rate. Figure 5 compares the behaviour
of a fixed-rate VVI pacemaker (with TLRI set to the safe level
of 1000 ms) against our VVIR pacemaker. In particular, we
calculate the number of ventricle beats after one minute and
two minutes of simulation at constant SA rate.

As previously discussed, we observe that the fixed-rate
pacemaker is not able to deliver an adequately high number
of beats at SA rates greater than 105 BPM. On the contrary,
the VVIR pacemaker is clearly more effective in adapting the
ventricular rate according to the actual demand. Specifically,
after the first minute of simulation we record correct behaviour
for SA frequency levels below 105 BPM. After this point, a
slightly lower ventricular rate can be noticed, ranging in the
interval 105-110 BPM for SA rates between 105-120 BPM.



This behaviour has to be attributed to the fact that the initial
TLRI is set to the conservative level of 1000 ms, and thus,
when the metabolic demand suddenly rises (i.e. high number
of SA beats), the VVIR pacemaker needs more time to adapt
to the correct pacing rate. Indeed, we observe that after the
second minute of simulation at constant SA rate, the VVIR
pacemaker is able to provide the correct number of ventricular
beats.

Note that the adaptation delay during the first minute of
simulation is a desirable feature in a rate-modulated pace-
maker, because it provides a safer and more robust response
to sudden metabolic increases, thus avoiding unnecessary
overpacing in presence of too sensitive sensors [11].

The rate-modulation mechanism during a two-minute sim-
ulation is illustrated in Figure 6 for different fixed SA frequen-
cies (80, 100 and 120 BPM) and starting from the same TLRI
(1000 ms). Our implementation does not update the pacing
rate at each QT detection, but it computes the TLRI over the
average of the four last detections, in order to avoid stiff rate
modulation dynamics that could occur with spurious QTIs. It is
worth highlighting that, from the same (long) TLRI, the time
needed for the first rate adaptation increases with the applied
SA rate, evidencing the robustness of our VVIR model which
“prudently” waits more time to change the pacing rate to a
value much higher than the current one.

D. Rate modulation under physical activity

In this section, we aim to validate our VVIR pacemaker
by simulating realistic exercise curves (taken from [9]). In
healthy subjects, a fast heart rate increase is detected at the
beginning of exercise (neural slope), followed by a slower
increase (metabolic slope). Rate decay during recovery from
exercise is generally fast after short exercise and prolonged
after long and intense activity.

Here we reproduce and compare the typical physical ac-
tivity curves of a young and old individual. In both classes
of patients, the heart rate demand follows the above-described
neural, metabolic and decay phases, but older subjects cannot
provide the same exercise intensity as a young individual, and
are consequently characterized by a lower maximum heart rate.
Figure 7 shows the SA rates during 20 minutes exercise in
young (plot (a)) and old (plot (b)) individuals, comparing the
number of ventricular beats between the VVIR pacemaker and
the fixed-rate VVI pacemaker. Again, we assume that both
patients are affected by a faulty AV node and that the SA
rate reflects the metabolic demand needed during the physical
activity. Table I illustrates how exercise curves are constructed.

We report that our rate-adaptive pacemaker successfully
manages to modulate the pacing rate according to the inten-
sity of physical activity. Minor decreases in the ventricular
frequency can be noticed only in correspondence of the most
intense phases: in the young subject, at minutes 9, 10 and 11,
the SA rate is 132, 136 and 140 BPM, while the number of V
beats is 113, 117 and 134 BPM, respectively; in the old patient,
at minute 11 the SA rate is 130 BPM, against a V rate of 114
BPM. However, such discrepancies are negligible if compared
to the behaviour of the fixed rate pacemaker that is unable
to provide an appropriate ventricular rate in response to SA
rates higher than 110 BPM. Indeed, in the young subject, from

SA rate [BPM]
Young Old

Neural slope 65 to 120 70 to 110([0,5] min)
Metabolic slope 120 to 140 110 to 130([5,10] min)

Decay 140 to 60 130 to 70([10,15] min)
Resting [60,75] [70,75]([15,20] min)

TABLE I: Simulated activity rates in young and old subjects
during exercise. We assume a linear dynamics from the initial
to the final rate of each phase, except from the resting phase,
where the number of beats is randomly sampled from the
reported discrete intervals.

minute 6 to 13, we register losses of ventricular beats between
31 and 43 BPM, while in the old one, fixed rate pacing leads
to frequencies that are between 8 and 49 BPM lower than the
SA rate (from minute 6 to 12). Even more importantly, we
can observe that episodes of sensor-induced tachycardia never
occur with the VVIR pacemaker, including at very high levels
of physical activity.

E. Parameter estimation and validation with patient data

We validate our model with the ECG data of five pa-
tients, obtained from the PhysioNet database [12] (MIT-BIH
Arrhythmia Database Directory and St. Petersburg Institute
of Cardiological Technics 12-lead Arrhythmia Database). The
considered subjects are reported to suffer from bradycardia
arrhythmia, a condition of slow resting heart rate (typically
lower than 60 BPM).

Since sequences of arrhythmias are sporadic, we firstly
apply an RR interval detection algorithm in order to quickly
identify sections of low heart rate within the 30 minute long
ECG recordings. Secondly, we extract QTIs and RR inter-
vals from the obtained bradycardia signals, by applying the
ECG detection algorithm presented in Sect. III-D. Finally, we
perform non-linear regression analysis over the sequences of
computed QT and RR intervals according to the law proposed
by Sarma et al. [30] and illustrated in Eq. 1 for relating QTI
lengths and heart rate.

As detailed in [8], our model-based framework is able to
simulate heart dynamics based on the generation of synthetic
ECG signals, performed following [10], [27]. Here we ex-
tend the framework in order to compute ECG signals from
prescribed sequences of QT and RR intervals. In this way,
we were able to reproduce a heart behaviour based on the
sequences of QT and RR intervals extracted from patient data
through our detection algorithm.

We finally show the capability of our pacemaker imple-
mentation to regulate not just sporadic bradyarrhythmia events,
but also signals characterized by a constant low heart rate.
Figure 8 illustrate the results obtained by taking input SA node
frequencies typical of bradycardia (between 40 and 60 BPM);
a functional atrioventricular system; and multiple QTI lengths
(454, 458, 462 and 466 ms) that are at the bordeline between
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Fig. 7: Rate modulation during exercise in young (a) and old (b) patients. The SA rate (black dashed line) determines the
metabolic demand during activity, and is calculated according to Table I. The number of ventricular beats is compared between
the VVIR pacemaker (green curve) and the VVI pacemaker (red curve).
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Fig. 8: Correction of bradycardia rythms by the VVIR pace-
maker at different QTI lengths: 454 (green line), 458 (red), 462
(blue) and 466 (purple) ms. For the range of low SA rates (x-
axis) considered (40-60 BPM), the number of V beats (y-axis)
varies between 56 and 79 BPM.

normal and those reported in subjects with long QT syndrome
[33]. Although the beats in the ventricle tend to decrease at
lower SA rates and at longer QTIs, we can observe that the
VVIR pacemaker is able to bring the ventricular rate to much
safer levels, between 56 and 79 BPM.

III. METHODS

We use hybrid input-output automata as a modelling frame-
work for the pacemaker and the heart. First, we recall the
model-based quantitative verification framework which was
introduced in [8] and provide an example showing how one can
model a single cardiac cell. Second, we provide an extension to
the basic pacemaker specification by adding the rate adaptive

component, which allows changing the pacing rate according
to the physical activity of the patient. The rate adaptive
component uses the QT sensor component to measure the time
interval between the ventricular stimulus and the evoked T
wave.

A. Hybrid automata model

In this section, we recall the basic details of the formal
framework for the modelling and quantitative verification of
pacemaker models that we introduced in [8]. The framework
is based on hybrid input-output automata [25] and supports
the composition of a heart model and a pacemaker model on
which verification is performed.

Let X = {x1, . . . , xd} be a set of variables in R. An X -
valuation is a function η : X → R assigning to each variable
x ∈ X a real value η(x). Let V(X ) denote the set of all
valuations over X . A constraint on X , denoted by grd, is a
conjunction of expressions of the form x ./ c for variable
x ∈ X , comparison operator ./ ∈ {<,≤, >,≥} and c ∈ R.
Let B(X ) denote the set of constraints over X . Let Y(X )
denote the set of all real-valued functions over 2X . We define
L(X ) := {x := u | x ∈ X ∧ u ∈ X ∪ {0}} to be the set of
update assignments over the set of variables X .

Definition 3.1 (Hybrid I/O Automaton): A hybrid I/O au-
tomaton (HIOA) A = (X , Q, q0, E1, E2, Inv,→,Diff) con-
sists of:

• a finite set of variables X ;

• a finite set of modes Q, with the initial mode q0 ∈ Q;

• a finite set E1 of input actions and a finite set E2 of
output actions with E = E1 ∪ E2;

• an invariant function Inv : Q→ B(X );

• a transition relation →⊆ Q × (E ∪ {ς}) × B(X ) ×
2L(X ) ×Q, where ζ is the internal action; and

• a derivative function Diff : Q × X → Y(X ) that
assigns a function to a variable x ∈ X .



Vs(vt)!

Vs(vt)!

VVIR Pacemaker

RA
Component

VP?

Vget?

TE?

VVI
Pacemaker

Vget?

Vs(vt)!

Vs(vt)!

VP!

QT
Sensor

TE!

Vget?Heart
Vs(vt)?

Vs(vt)?
Vget!

(a) Composition of the heart and VVIR pacemaker models

q3

v < VO

v > VR

v̇ = ↵3vf(✓)

{v < VT } ^ Vs?/{vn := v}
q0

v < VR

q1

v < VT

q2
v̇ = ↵2v
v < VO

v > VT

{v < VT } ^ V̄s?

v � VT

v � VO

v  VR
v � V

T

v̇ = ↵0v+g(~v) v̇ = ist+g(~v)

(b) Hybrid I/O automaton modelling a cardiac cell

q0 q1 q2

Vget?/

{tVP := 0},

{tQT := 0}

VP?/

{tVP := 0},

{tQT := 0}

tVP � TR

{tQT�Tl^tQTTu}^TE?/

{TLRI := fQT(tQT)}

{tQT>Tu}

(c) Rate adaptive component

Fig. 9: Components of the modelling framework.

Example 3.1: In Fig.9(a) we depict a HIOA modelling a
cardiac cell [34]. The HIOA consists of the set of variables
X = {v}, the set of locations Q = {q0, q1, q2, q3}, the
set of input actions E1 = {Vs, V̄s} and the empty set of
output actions. The variable v describes the value of the action
potential in the cardiac cell. The set of input action denote the
beginning and the end of the simulus event. The invariant for
location q0 is v < VR and the guard for the transition from
location q1 to location q0 is v < VT . The derivative function
for variable v in location q1 is ist + g(~v). The dynamics in
locations q1 describes the behavior of the action potential
under an external stimulus current ist or the action potential
of neighbouring cells.

B. Basic pacemaker components

The pacemaker is implanted under the chest skin and sends
impulses to the heart at specific time intervals. In most cases
the pacemaker comes implanted with two leads: one for the
atrium and one for the ventricle. Each lead has the ability
to sense or deliver an electrical signal. Here we extend the
pacemaker model [22] based on Timed Automata (TAs) which
was used to validate the framework from [8].

The pacemaker model in [22] consists of five basic TA
components and an additional component that implements the
rate adaptive (RA) algorithm. The basic components are: the
lower rate interval (LRI) component, the atrio-ventricular inter-
val (AVI) component, the upper rate interval (URI) component,
the post ventricular atrial refractory period (PVARP) compo-

nent and the ventricular refractory period (VRP) component.
The LRI component has the function of keeping the heart rate
above a given minimum value. The AVI component has the
purpose to maintain the synchronisation between the atrial and
the ventricular events. An event is when the pacemaker senses
or generates an action. The AVI component also defines the
longest interval between an atrial event and a ventricular event.
The PVARP component notifies all other components that an
atrial event has occurred. The URI component sets a lower
bound on the times between consecutive ventricular events.
The VRP component filters noise and early events that may
cause undesired behaviour. The basic model described above
represents the DDD type of pacemakers (sensing and pacing
in both atrium and the ventricle). In this work we model the
VVIR pacemaker, obtained from the basic model by including
only sensing and pacing in the ventricle.

The components of the VVIR model and the interfaces with
the heart model are depicted in Figure 9??. The sensing of a
ventricular beat is implemented through action Vget, which
notifies the pacemaker when there is an action potential from
the ventricle. This signal is captured by the pacemaker only
if the value of the action potential sensed from the ventricle
crosses a given threshold. The output action VP notifies the
pacemaker to pace the ventricle, while actions Vs(vt) and
Vs(vt) communicate the beginning and the end, respectively,
of a paced ventricular impulse to the heart model. The VP
event is generated by the VVI pacemaker component and is
used to synchronize both the beginning of the paced impulse
and the rate-adaptive (RA) component.



C. Rate adaptive component

The RA component is connected to the basic five pace-
maker components in order to change the pacing rate according
to the exercise activity of the patient. The pacing rate TLRI
is set by the LRI component of the pacemaker model. When
the basic pacemaker components function by themselves the
value of TLRI remains fixed.

The task of the RA component is to change the value
of TLRI according to the data received from the QT sensor
component. In Simulink, we implement the QT sensor compo-
nent as an ECG detection algorithm (see Section III-D). The
output of the algorithm is the event TE!, which notifies the
RA component of the exact time location of the T wave. In
Figure 9(b) we depict the RA component as a HIOA.

In the initial state q0, the RA component is always waiting
for a ventricle sense event from atrium, Vget, or for a ventricle
pace event, VP. When one of these events is enabled, the
RA component starts two timers tVP and tQT . tVP defines
the refractory window of size TR where the RA component
disables the pacemaker inputs. tQT defines the window where
the RA component waits for the TE! event. If the TE! event
arrives in the interval of time [T l, Tu] then the value of the QT
interval is tQT. This value is given as input to the function fQT

in order to compute the next pacing rate TLRI. The function
fQT reads from memory four previous stored QT values, takes
the average and applies Eq.1 to get a new value for TLRI.

D. ECG detection algorithm.

In previous section we have described the rate adaptive
pacemaker component which requires as input the TE event.
In this section we present an implementation of the ECG
detection algorithm that is used to detect each characteristic
peak that defines the QTI length in the ECG signal. The
sequencing and structure of the algorithm is based on [35].
The main task of the algorithm is to detect the R peak (see
Fig.1) the most prominent peak in the ECG signal. This is
achieved by pre-processing, applying the difference operation
and finally detecting whether the value of the obtained signal
crosses a given threshold.

Pre-processing of the ECG signal requires normalising (to
ensure a 0 mV baseline) and filtering (to remove noise and
baseline drift). The ECG signal is segmented into pre-defined
time windows in order to analyse the QRS complex. The
difference signal, as described in [35], uses the differential
form xd(n) = x(n)−x(n−1), where x(n) is the value of the
ECG signal at step n. Once applied, this function generates the
derivative ECG signal. The obtained signal is then separated
into positive and negative halves.

To locate the R peak we find the turning point between
each maxima in the positive difference signal and maxima in
the negative difference signal. The point of zero gradient, in
between these two maxima, indicates the location of the tip of
the R peak. The location of the R peak is then used to locate
the surrounding of the remaining points of interest - Q peak,
S peak and T peak. The Q peak and S peak are both located
using a search interval (in the x direction) relative to the R
peak location and a magnitude threshold (in the y direction).

To calculate the T wave duration, we implement the method
by Gritzali et al [15]. We define a search window alongside
a magnitude threshold value. The Gritzali method then uses
this threshold value to determine points of intersection with
the ECG signal.

Fig. 10: Gritzali method for defining wave duration

However, when the signal is jagged the threshold can
intersect the signal multiple times on a single side of the
wave (see Fig.10). To overcome this issue we place several
conditions on the selection of the intersection points and we
use the peak of the wave as a reference point - always ensuring
that one intersection point was on the left of the centre and
another on the right. Once we compute the initial reference
points we are able to determine the T wave duration and the
QTI. The implemented algorithms require ECG data that is
collected in advance. However, the algorithms can be modified
to work in real time.

IV. CONCLUSION AND FUTURE WORK

We have enhanced the model-based framework of [8] with
the functionality to rigorously analyse the rate modulation
capability of a rate-adaptive VVIR pacemaker under a variety
of activity levels and patient types. We have implemented the
QT sensor and validated our Simulink implementation on real
patient data by demonstrating in silico that it corrects faulty
heart behaviours. Our framework can help reduce the cost of
pacemaker development by reducing the need for tests on real
patients.

As future work, we plan to increase the physiological
accuracy of the simulation, and implement a more complex
heart model. Another natural step would be to extend the
pacemaker specification and to include input from multiple
sensors, such as motion and vibration. We also plan to exploit
our framework to verify more advanced properties that could
ensure the correct functioning of the enhanced pacemaker.
Formal verification would provide a benchmark for proving
and/or comparing the safety of such medical devices.

ACKNOWLEDGMENT

This work is supported by the ERC AdG VERIWARE,
ERC PoC VERIPACE and the Institute for the Future of
Computing, Oxford Martin School.

REFERENCES

[1] PhysioNet. http://http://www.physionet.org/physiobank/.
[2] F. Amigoni, A. Beda, and N. Gatti. Combining rate-adaptive cardiac

pacing algorithms via multiagent negotiation. Information Technology
in Biomedicine, IEEE Transactions on, 10(1):11–18, 2006.



[3] S. S. Barold, R. X. Stroobandt, and A. F. Sinnaeve. Cardiac pacemakers
and resynchronization step by step: An illustrated guide. John Wiley
& Sons, 2010.

[4] E. Bartocci, F. Corradini, M. R. Di Berardini, E. Entcheva, S. A.
Smolka, and R. Grosu. Modeling and simulation of cardiac tissue using
hybrid i/o automata. Theoretical Computer Science, 410(33):3149–
3165, 2009.

[5] H. Bazett. An analysis of the time-relations of electrocardiograms.
Heart, 7:353–370, 1920.

[6] H. L. Brouwer, K. A. Mensink, and F. H. Wittkampf. Rate adaptive
pacemaker and method of cardiac pacing, Dec. 15 1981. US Patent
4,305,396.

[7] T. Y. Cardall, W. J. Brady, T. C. Chan, J. C. Perry, G. M. Vilke,
and P. Rosen. Permanent cardiac pacemakers: issues relevant to the
emergency physician, part II. The Journal of emergency medicine,
17(4):697–709, 1999.

[8] T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantita-
tive verification of implantable cardiac pacemakers over hybrid heart
models. Information and Computation, In press, 2014.

[9] J. Clémenty, S. S. Barold, S. Garrigue, D. C. Shah, P. Jaıs,
P. Le Métayer, and M. Haıssaguerre. Clinical significance of multi-
ple sensor options: rate response optimization, sensor blending, and
trending. The American journal of cardiology, 83(5):166–171, 1999.

[10] G. D. Clifford, S. Nemati, and R. Sameni. An artificial vector model
for generating abnormal electrocardiographic rhythms. Physiological
measurement, 31(5):595, 2010.

[11] S. Dell’Orto, P. Valli, and E. M. Greco. Sensors for rate responsive
pacing. Indian pacing and electrophysiology journal, 4(3):137, 2004.

[12] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley.
Physiobank, physiotoolkit, and physionet components of a new research
resource for complex physiologic signals. Circulation, 101(23):e215–
e220, 2000.

[13] A. O. Gomes and M. V. M. Oliveira. Formal specification of a cardiac
pacing system. In FM 2009: Formal Methods, pages 692–707. Springer,
2009.

[14] S. Greenhut, J. Jenkins, and R. MacDonald. A stochastic network model
of the interaction between cardiac rhythm and artificial pacemaker.
Biomedical Engineering, IEEE Transactions on, 40(9):845–858, 1993.

[15] F. Gritzali, G. Frangakis, and G. Papakonstantinou. Detection of the
P and T waves in an ECG. Computers and Biomedical Research,
22(1):83–91, 1989.

[16] R. Grosu, E. Bartocci, F. Corradini, E. Entcheva, S. A. Smolka, and
A. Wasilewska. Learning and detecting emergent behavior in networks
of cardiac myocytes. In Hybrid Systems: Computation and Control,
pages 229–243. Springer, 2008.

[17] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. Le Guernic, S. A. Smolka,
and E. Bartocci. From cardiac cells to genetic regulatory networks. In
Computer Aided Verification, pages 396–411. Springer, 2011.

[18] J. R. Hampton. The ECG in practice. Elsevier Health Sciences, 2013.

[19] E. Jee, S. Wang, J. K. Kim, J. Lee, O. Sokolsky, and I. Lee. A safety-
assured development approach for real-time software. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2010 IEEE
16th International Conference on, pages 133–142. IEEE, 2010.

[20] Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and R. Mangharam. Real-time
heart model for implantable cardiac device validation and verification.
In ECRTS, pages 239–248, 2010.

[21] Z. Jiang, M. Pajic, and R. Mangharam. Cyber–physical modeling
of implantable cardiac medical devices. Proceedings of the IEEE,
100(1):122–137, 2012.

[22] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling
and verification of a dual chamber implantable pacemaker. In TACAS,
pages 188–203, 2012.

[23] C.-P. LAU, Y.-T. TAI, P.-C. FONG, C.-H. CHENG, and F. L.-W.
CHUNG. Pacemaker mediated tachycardias in single chamber rate
responsive pacing. Pacing and Clinical Electrophysiology, 13(12):1575–
1579, 1990.
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