
Partial order reduction for model checking interleaved
multi-agent systems

Alessio Lomuscio1 and Wojciech Penczek2 and Hongyang Qu3

1 Department of Computing, Imperial College London, UK
2 Institute of Computer Science, PAS, and University of Podlasie, Poland

3 Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK

Abstract. We investigate partial order reduction for model checking of multi-
agent systems by focusing on interleaved interpreted systems. These are a particu-
lar class of interpreted systems, a mainstream MAS formalism, in which only one
action at the time is performed in the system. We present a notion of stuttering-
equivalence, and prove the semantical equivalence of stuttering-equivalent traces
with respect to LTLK−X , a linear temporal logic for knowledge without the next
operator. We give an algorithm to reduce the size of the models before the model
checking step and show it preserves LTLK−Xproperties. We evaluate the tech-
nique by discussing an implementation and the experimental results obtained
against well-known examples in the MAS literature.

1 Introduction

Several approaches have been put forward for the verification of MAS by means of
model checking [3]. Some approaches are based on reducing the verification problem
to the one of plain temporal logic and use existing tools for that task [1]. Others treat typ-
ical MAS modalities such as knowledge, correctness, cooperation, as first-class citizens
and introduce novel algorithms for them, e.g., [17]. In an attempt to limit the state-space
explosion problem (i.e., the problem that the state space of the system grows exponen-
tially with the number of variables in the agents) two main symbolic approaches have
been proposed: ordered binary decision diagrams [17, 16], and bounded model check-
ing via propositional satisfiability [14]. These have produced positive results showing
the ability to tackle state spaces of 1030 and above. However, in the standard literature
of model checking reactive systems other, sometimes more efficient, approaches exists.

In particular, partial order reduction (e.g., [13]) is one of the most widely known
techniques in verification of reactive systems. Still, the only approach to partial order
reduction in a MAS context [9] presents theoretical results only, with no algorithm nor
an implementation being discussed; as such it is difficult to assess how effective it is
in concrete cases. In our experience, given their autonomous nature, MAS differ from
standard reactive systems by displaying more “loosely coupled” behaviours. This makes
the state-explosion problem even more challenging for MAS than it is already for reac-
tive systems. It seems therefore of importance to conduct a systematic and comparative
study of all possible techniques available to determine the most appropriate treatment
to the verification problem.

In this paper we aim to make concrete progress in this area by studying a particular
class of interpreted systems that we call interleaved interpreted systems (IIS). IIS are a
special class of interpreted systems [5] in which only one action at a time is performed
in a global transition. Several agents may be participating in the global action but, if so,
they perform the same action, thereby synchronising at that particular time step. Many
asynchronous reactive systems have been studied on similar semantics (see, e.g., [11,
6]) and it is easy to see that asynchronous MAS may be modelled within the formalism
presented below.

In a nutshell, given a model MS (representing a system S) and a formula φP (rep-
resenting a specification property P to be checked) in the temporal logic LTL−X (the
linear temporal logic LTL without the neXt operator X), model checking via partial
order reduction suggests to compute MS |= φP by replacing MS with a smaller model
M ′S built on traces that are semantically equivalent (with respect to φP) to the ones of
MS . Of key importance in this line of work is not only to determine a notion of equiva-
lence but also to present algorithms that can transform (in polynomial time) MS into a
suitable M ′S even without generating MS . The literature of reactive systems has shown
that in several scenarios this reduction can be very effective and brings results com-
parable or superior to the ones of other techniques including ordered-binary decision
diagrams.

In this paper we draw inspiration from the above to conduct a similar exercise in
the context of MAS logics. We begin in Section 2 by presenting IIS and the logic
CTL*K−X , and, in particular, LTLK−X , a linear temporal logic for knowledge without
the next operator. In Section 3 we proceed to present a notion of stuttering-equivalence
with respect to IIS. We move on to describe a novel partial order algorithm that pre-
serves LTLK−Xproperties in Section 4. In Section 5 we present an implementation of
the technique and report key experimental results. We conclude the paper in Section 6.

2 Preliminaries

We introduce here the basic technical background to the present paper. In particular
we introduce the semantics of interpreted systems, properly augmented with suitable
concepts for our needs, and the basic syntax we shall be using in the rest of the paper.

2.1 Interleaved Interpreted Systems

The semantics of interpreted systems provides a setting to reason about MAS by means
of specifications based on knowledge and linear time. We report here the basic setting
as popularised in [5]. Actions in interpreted systems are typically considered to be exe-
cuted at the same round by all participants: this permits the modelling of synchronous
systems in a natural way. While interpreted systems are typically considered in their
synchronous variant here we look at the asynchronous case by assuming that only one
local action may be performed at a given time in a global state. If more than one agent is
active at a given round, all active agents perform the same (shared) action in the round.
Differently from standard interpreted systems where, in principle, the agents’ resulting
local states depend on the actions performed by all the agents in the system, here we

assume the local states are only influenced by the same agent’s action at the previous
round. Note that it is still possible for agents to communicate by means of shared action.
More formally, we proceed as follows:

We begin by assuming a MAS to be composed of n agents A = {1, . . . , n}4. We
associate a set of possible local states Li = {l1i , l2i , . . . , l

nli
i } and actions Acti =

{εi, a1
i , a

2
i , . . . , a

nai
i } to each agent i ∈ A. We call the special action εi the “null”,

or “silent” action of agent i; as it will be clear below the local state of agent i remains
the same if the null action is performed. Also note we do not assume that the sets of
actions of agents to be disjoint. We callAct =

⋃
i∈AActi the union of all the setsActi.

For each action a by Agent(a) ⊆ A we mean all the agents i such that a ∈ Acti, i.e.,
the set of agents potentially able to perform a.

Following closely the interpreted system model, we consider a local protocol mod-
elling the program the agent is executing. Formally, for any agent i, the actions of
the agents are selected according to a local protocol Pi : Li → 2Acti ; we assume
that ε ∈ Pi(lmi), for any lmi ; in other words we insist on the null action to be en-
abled at every local state. For each agent i, we define an evolution (partial) function
ti : Li × Acti → Li, where ti(li, εi) = li for each li ∈ Li. Note the local transition
function considered here differs from the standard treatment in interpreted systems by
depending only on the local action in question.

A global state g = (l1, . . . , ln) is a tuple of local states for all the agents in the
MAS corresponding to an instantaneous snapshot of the system at a given time. Given
a global state g = (l1, . . . , ln), we denote by gi = li the local component of agent
i ∈ A in g. Given the notions above we can now define formally the global transitions
we consider in this paper.

Definition 1 (Interleaved semantics). Let G be a set of global states. The global in-
terleaved evolution function t : G × Act1 × · · · × Actn → G is defined as fol-
lows: t(g, act1, . . . , actn) = g′ iff there exists an action a ∈ Act such that for all
i ∈ Agent(a), acti = a and ti(gi, a) = g′i, and for all i ∈ A \ Agent(a), acti = εi
and ti(gi, acti) = gi. In brief we write the above as g a−→ g′.

Similar to blocking synchronisation in automata, the above insists on all agents per-
forming the same action in a global transition; additionally note that if an agent has the
action being performed in its repertoire it must be performed for the global transition to
be allowed. This assumes local protocols are defined in such a way to permit this; if a
local protocol does not permit this, the local action cannot be performed and therefore
the global transition does not comply with the definition of interleaving above. As we
formally clarify below we only consider interleaved transitions here.

We assume that the global transition relation is total, i.e., that for any g ∈ G there
exists an a ∈ Act such that g a−→ g′, for some g′ ∈ G. A sequence of global states
and actions π = g0a0g1a1g2 . . . is called an interleaved path, or an interleaved run
(or more simply a path or a run) originating at g0 if there is a sequence of interleaved
transitions from g0 onwards, i.e., if gi

ai−→ gi+1 for every i ≥ 0. The set of interleaved

4 Note in the present study we do not consider the environment component. This may be added
with no technical difficulty at the price of heavier notation.

paths originating from g is denoted as Π(g). A state g is said to be reachable from g0
if there is an interleaved path π = g0a0g1a1g2 . . . such that g = gi for some i ≥ 0.

Definition 2 (Interleaved Interpreted Systems). Given a set of propositions PV , an
interleaved interpreted system (IIS), also referred to as a model, is a 4-tuple M =
(G, ι,Π, V), where G is a set of global states, ι ∈ G is an initial (global) state such
that each state in G is reachable from ι, Π =

⋃
g∈G

Π(g) is the set of all the interleaved

paths originating from all states in G, and V : G→ 2PV is a valuation function.

Figure 1 presents an interleaved interpreted system (the untimed version of the original
Train-Gate-Controller (TGC) example in [15]) composed of three agents: a controller
and two trains. Each train runs on a circular track and both tracks pass through a narrow
tunnel, allowing one train only to go through it at any time. The controller controls
the signal to let trains enter and leave the tunnel. In the figure, the initial states of the
controller and the train are ‘G’ and ‘W’ respectively, and the transitions with the same
label are synchronised. ε actions are omitted in the figure.

W

T

A

G

R

W

T

A

Train1 Train2Controller

a1
a1a2

a2
a3

b1
b1b2

b2
b3

Fig. 1. An IIS of TGC composed of two trains

In order to define partial order reductions we need the following definitions.

Definition 3. Let i ∈ A, g, g′ ∈ G, and J ⊆ A.

– ∼i ⊆ G×G is defined as: g ∼i g
′ iff gi = g′i.

– ∼J=
⋂

j∈J ∼j .
– I ⊆ Act×Act is defined as follows: I = {(a, b) | Agent(a) ∩Agent(b) = ∅}.

The first relation (∼i) is normally associated with the indistinguishably relation for the
epistemic modality (see below), the second (∼J) corresponds to the indistinguishably
relation for the epistemic modality of distributed knowledge in group J , whereas the
third (I) is referred to as the independency relation in partial order approaches.

We say that two actions a, a′ are dependent if (a, a′) 6∈ I .

Definition 4 (Reduced Model). Consider two modelsM = (G, ι,Π, V),M ′ = (G′, ι′,
Π ′, V ′). If G′ ⊆ G, ι′ = ι and V ′ = V |G′, then we write M ′ ⊆M and say that M ′ is
a submodel of M , or that M ′ is a reduced model of M .

We now define the syntax and semantics of our language.

2.2 Syntax of CTL*K−X

Combinations of linear/branching time and knowledge have long been used in the anal-
ysis of temporal epistemic properties of systems [5, 7]. We recall the basic definitions
here and adapt them to our purposes when needed.

Let PV be a finite set of propositions. First, we give a syntax of CTL*K−X and
then restrict it to LTLK−X and other sublanguages. The state and path formulas of
CTL*K−X are defined inductively as follows:

S1. every member of PV is a state formula,
S2. if ϕ and ψ are state formulas, then so are ¬ϕ and ϕ ∧ ψ,
S3. if ϕ is a path formula, then Aϕ, Eϕ, and Kiϕ (i ∈ A) are state formulas,
P1. any state formula ϕ is also a path formula,
P2. if ϕ, ψ are path formulas, then so are ϕ ∧ ψ and ¬ϕ,
P3. if ϕ, ψ are path formulas, then so is U(ϕ,ψ).

The modal operator A has the intuitive meaning “for all paths” whereas E - “there is
a path”. The operator U denotes the standard Until modality. Ki denotes knowledge
of agent i: Kiφ is read as “agent i knows that φ”. CTL*K−X consists of the set of all

state formulae. The following abbreviations will be used: true
def
= ¬(p∧¬p), for some

p ∈ PV , Fϕ
def
= U(true, ϕ), Gϕ

def
= ¬F¬ϕ. As standard, F represents the temporal

operator of “eventually” (in the future) and G corresponds to “forever” (in the future).
We now define a variety of logics included in CTL*K−X .

Definition 5.

– LTLK−X⊂ CTL*K−X is the fragment of CTL*K−X in which all modal formulas
are of the form Aϕ, where ϕ does not contain the state modalities A, E. As custom-
ary, we usually write ϕ instead of Aϕ if confusion is unlikely.

– CTLK−X⊂ CTL*K−X is the fragment of CTL*K−X in which the state modalities
A, E, and the path modalities U, F and G may only appear paired in the combina-
tions AU , EU , AF , EF , AG, and EG.

– For any logic L and J ⊆ A, we write LJ for the restriction of the logic L such that
for each subformula Kiϕ we have i ∈ J .

Next, we give the semantics to the logics used in this paper.

2.3 Semantics of CTL*K−X

Let M = (G, ι,Π, V) be a model and let π = g0a0g1 · · · be an infinite path of G.
Let πi denote the suffix giaigi+1 · · · of π and π(i) denote the state gi. Satisfaction of a
formula ϕ in a state g of M , written (M, g) |= ϕ, or just g |= ϕ, is defined inductively
as follows:

S1. g |= q iff q ∈ V (g), for q ∈ PV ,
S2. g |= ¬ϕ iff not g |= ϕ,

g |= ϕ ∧ ψ iff g |= ϕ and g |= ψ,

S3. g |= Aϕ iff π |= ϕ for every path π starting at g,
g |= Eϕ iff π |= ϕ for some path π starting at g,
g |= Kiϕ iff g′ |= ϕ for every g′ ∈ G such that g ∼i g

′,
P1. π |= ϕ iff g0 |= ϕ for any state formula ϕ,
P2. π |= ¬ϕ iff not π |= ϕ,

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ,
P3. π |= U(ϕ,ψ) iff there is an i ≥ 0 such that πi |= ψ and πj |= ϕ for all 0 ≤ j < i.

3 Characterisation of LTLKJ
−X

Having now fixed the syntax and semantics on which to operate we now proceed to give
a notion of behavioural equivalence, and to show this is preserved under the particular
algorithm we introduce in the next section. To begin with we define a notion of action
invisibility.

Definition 6. An action a ∈ Act is invisible in a model (G, ι,Π, V) if whenever g a−→
g′ for any two states g, g′ ∈ G we have that V (g) = V (g′).

An action a ∈ Act is J-invisible in a model (G, ι,Π, V) if whenever g a−→ g′ for
any two states g, g′ ∈ G we have that V (g) = V (g′) and g ∼J g

′.

In other words, an action is invisible if its execution does not change the global valua-
tion. An action is J-invisible if it is invisible and all local states in J are not changed by
its execution (recall that all local states inA\Agent(a) are not changed in the transition
labelled with a either).

We denote the set of invisible (respectively, J-invisible) actions by Invis (InvisJ ,
respectively), and we write V is = Act \ Invis (respectively, V isJ = Act \ InvisJ)
for the set of visible actions ((J-)visible actions, respectively).

Definition 7. Let π = g0a0g1a1 · · · be a (finite or infinite) path in a model M and
J ⊆ A. We define the J-stuttering-free projection PrJ(π) of a path π inductively as
follows:

– PrJ(g0) = g0;
– PrJ(g0 · · · gi) = PrJ(g0 · · · gi−1) if V (gi−1) = V (gi) and gi−1 ∼J gi;
PrJ(g0 . . . gi) = PrJ(g0 . . . gi−1)gi otherwise.

Let M = (G, ι,Π, V) and M ′ = (G′, ι′, Π ′, V ′) be two models such that M ′ ⊆M . In
the following, we begin with the definition of J-stuttering among states. Then, we define
stuttering equivalence of two paths π, π′ ∈ Π and extend it to J-stuttering equivalence.
Finally, we present the notion of J-stuttering trace equivalence over states.

Definition 8 (J-stuttering of States). Two states g ∈ G and g′ ∈ G′ are J-stuttering,
denoted with JKS(g, g′), if V (g) = V ′(g′) and g ∼J g

′.

Definition 9 (Stuttering Equivalence). A path π = g0a0g1a1 · · · in M and a path
π′ = g′0a

′
0g
′
1a
′
1 · · · in M ′ are called stuttering equivalent, denoted π ≡s π

′, if there
exists a partition B1, B2 . . . of the states of π, and a partition B′1, B′2 . . . of the states
of π′ such that for each j ≥ 0 we have that Bj and B′j are nonempty and finite, and
for every state g in Bj and every state g′ in B′j we have V (g) = V ′(g′).

Definition 10 (J-stuttering Equivalence). Two paths π in M and π′ in M ′ are called
J-stuttering equivalent, denoted π ≡Jks π

′, if π ≡s π
′ and for each j ≥ 0 and for every

state g in Bj and every state g′ in B′j we have g ∼J g
′,

Definition 11 (J-stuttering Trace Equivalence). Two states g in M and g′ in M ′ are
said to be J-stuttering trace equivalent, denoted g ≡Jks g

′, if

1. for each infinite path π inM starting at g, there is an infinite path π′ inM ′ starting
at g′ such that π ≡Jks π

′;
2. for each infinite path π′ inM ′ starting at g′, there is an infinite path π inM starting

at g such that π′ ≡Jks π.

Two models M and M ′ are J-stuttering trace equivalent (M ≡Jks M
′), if ι ≡Jks ι

′.

The following theorem connects LTLKJ
−X with J-stuttering trace equivalence:

Theorem 1. Let M and M ′ be two J-stuttering trace equivalent models, where M ′ ⊆
M . Then, M, ι |= ϕ iff M ′, ι′ |= ϕ, for any LTLKJ

−X formula ϕ over PV .

Proof. By induction on the structure of ϕ. Due to the page limit, the proof is omitted.

This concludes our analysis of stuttering equivalent paths. We now give an algorithm
that assures that given a model and a formula returns a potentially smaller model and
show by means of the theorem above that the reduced model preserves the formula.

4 Partial order reductions

As mentioned above, the idea of verification by model checking with partial order re-
duction is to implement an algorithm that given a model can produce a smaller model
that provably validates the same formulae of interest. This generation requires a notion
of equivalence between paths and models. For the case of LTLKJ

−X we show below
that the notion of J-stuttering trace equivalence presented above suffices. The algorithm
presented explores the given model and returns a reduced one. Traditionally, in partial
order reduction the exploration is carried out either by depth-first-search (DFS) (see
[6]), or double-depth-first-search (DDFS) [4].

In this context DFS is used to compute paths that will make up the reduced model
by systematically exploring the possible computation tree and selecting only some of
the possible paths generated. We proceed as follows. A stack represents the path π =
g0a0g1a1 · · · gn currently being visited. For the top element of the stack, i.e., gn, the
following three operations are computed in a loop:
1. The set en(gn) ⊆ Act of enabled actions (not including the ε action) is identified

and a subset E(gn) ⊆ en(gn) of possible actions is heuristically selected.
2. For any action a ∈ E(gn) compute the successor state g′ such that gn

a→ g′,
and add g′ to the stack generating the path π′ = g0a0g1a1 · · · gnag

′. Recursively
proceed to explore the submodel originating at g′ in the same way by means of the
present algorithm beginning at step 1.

3. Remove gn from the stack.

The algorithm begins with a stack comprising of the initial state and terminates when
the stack is empty. The model generated by the algorithm is a submodel of the orig-
inal. The size of the submodel crucially depends on the ratio E(g)/en(g). Clearly, if
E(g) = en(g) for all g explored there is no reduction, and the algorithm returns the
whole model. The choice of E(q) is constrained by the class of properties that must be
preserved. In the rest of this section, we present the criteria based on the J-stuttering
trace equivalence for the choice of E(q) and give details of the DFS algorithm imple-
menting them.

4.1 Preserving LTLKJ
−X properties

In the sequel, let φ be a LTLKJ
−X formula to be checked over the model M with J ⊆ A

such that for each subformula Kiϕ contained in φ, i ∈ J , and let M ′ be a submodel of
M , generated by the algorithm. The states and the actions connecting states in M ′ con-
struct a directed state graph. We give conditions defining a heuristics for the selection
of E(g) (such that E(g) 6= en(g)) while visiting state g in the algorithm below.

C1 No action a ∈ Act \E(g) that is dependent (see Definition 3) on an action in E(g)
can be executed before an action in E(g) is executed.

C2 On every cycle in the constructed state graph there is at least one node g for which
E(g) = en(g), i.e., for which all the successors of g are expanded.

C3 All actions in E(g) are invisible (see Definition 6).
CJ For each action a ∈ E(g), Agent(a)∩J = ∅, i.e., no action in E(g) changes local

states of the agents in J .

The conditions C1−C3 are inspired from [12], whereas as we note below CJ is aimed
at preserving the truth value of subformulae of the form Kiϕ for i ∈ J .

Theorem 2. Let M be a model and M ′ ⊆ M be the reduced model generated by the
DFS algorithm described above in which the choice of E(g′) for g′ ∈ G′ is given by
C1, C2, C3, CJ above. The following conditions hold:

a) M and M ′ are J-stuttering trace equivalent;
b) M |= φ iff M ′ |= φ, for any φ ∈ LTLKJ

−X .

Proof. (Sketch) Although the setting is different the condition a) can be shown similarly
to Theorem 3.11 in [13] stating that the conditions C1, C2, C3 guarantee that the models
M and M ′ are stuttering equivalent. Given condition CJ and M ′ ⊆ M , we can prove
that the models M and M ′ are J-stuttering trace equivalent. The condition b) of the
theorem follows from this and Theorem 1.

4.2 The DFS-POR algorithm

We now give details of a DFS algorithm implementing conditions C1, C2, C3, CJ for
the choice of E(g). We use two stacks: Stack1 represents the stack described above
containing the global states to be expanded, whereas Stack2 represents additional in-
formation required to ensure condition C2 is satisfied, i.e., each element in Stack2 is

the depth of Stack1 when its top element is fully explored. Initially, Stack1 contains
the initial state, whereas Stack2 is empty. G is the set of the visited states. The algo-
rithm DFS-POR does not generate the minimal J-stuttering equivalent model; however
its computation overheads are negligible and, as we show in the section below, it still
generates attractive results in several cases.

Algorithm 1 DFS-POR ()
1: g ⇐ Top(Stack1); reexplore ⇐ false;
2: if g = Element(Stack1, i) then
3: depth ⇐ Top(Stack2);
4: if i > depth then
5: reexplore ⇐ true;
6: else
7: Pop(Stack1); return;
8: end if
9: end if

10: if reexplore = false and g ∈ G then
11: Pop(Stack1); return;
12: end if
13: G ⇐ G ∪ {g}; E(g) ⇐ ∅;
14: if en(g) 6= ∅ then
15: if reexplore = false then
16: for all a ∈ en(g) do
17: if a 6∈ V is and a 6∈ V isJ and ∀b ∈ en(g) \ {a} : (a, b) ∈ I then
18: E(g) ⇐ {a}; break;
19: end if
20: end for
21: end if
22: if E(g) = ∅ then E(g) ⇐ en(g); end if
23: if E(g) = en(g) then
24: Push(Stack2, Depth(Stack1));
25: end if
26: for all a ∈ E(g) do
27: g′ ⇐ Successor(g, a); Push(Stack1, g′); DFS-POR();
28: end for
29: end if
30: depth ⇐ Top(Stack2);
31: if depth = Depth(Stack1) then Pop(Stack2); end if
32: Pop(Stack1);

In the algorithm, the function Top(s) returns the top element of the stack s; Push(s, e)
pushes the element e onto the top of the stack s; Pop(s) removes the top element of
the stack s; Element(s, i) returns the i-th element of the stack s; Depth(s) returns the
depth (size) of the stack s; Successor(g, a) returns the successor g′ such that g a→ g′.

Line 2 is used to detect a cycle. This can be implemented in the time complexity
O(1) by using a hash table to index the state in Stack1. If a cycle is found, we check

whether at least one state is expanded fully in the cycle. This check is done in line 4 by
comparing the top element of Stack2 and the index i of the repeated state in Stack1.
If the check fails, we set reexplore to true in order to fully expand the top state g in
Stack1 to satisfy condition C2.

The lines 15-21 look for an action that is neither visible nor J-visible, and is in-
dependent of any other actions in en(g). A set composed of such an action satisfies
the conditions C1, C3 and CJ. If no such action exists, we simply explore all enabled
actions. This could be improved by searching for an appropriate subset of en(g) to ex-
pand (e.g., [12] could be a starting point). In case E(g) = en(g), we push the current
depth of Stack1 onto the top of Stack2 for checking C2. When all actions in E(g) are
visited, we remove the top element of Stack1 and Stack2 properly.

We stress that DFS-POR is of linear complexity in the size of an IIS and the reduced
model constructed.

5 Experimental Results

In order to evaluate the results above, we have implemented the DFS-POR algorithm
to reduce models for LTLKJ

−X as well as the model checking algorithm for CTLKJ
−X .

In doing so we are encouraged by the observation of the preceding section that the
algorithm’s complexity is linear both in the length of the formula and the size of a
model. We have conducted experiments for two systems: the TGC of Section 2.1 and
the Dining Cryptographers (DC) [2], discussed below.

Starting with TGC, we tested the property expressing that whenever the train 1 is in
the tunnel, it knows that no other train is in the tunnel at the same time:

AG(in tunnel1 → Ktrain1

n∧
i=2

¬in tunneli),

under the assumption that where n is the number of trains in the system, and the atomic
proposition in tunneli holds in the states where the train i is in the tunnel. We found
that the size of the reduced state space R(n) given by the algorithm is a function of the
number of trains n, for 1 ≤ n ≤ 10. This is compared to the size of the full state space
F (n) below:

– F (n) = cn × 2n+1, for some cn > 1,
– R(n) = 3 + 4(n− 1).

Note that the reduced state space is exponentially smaller than the original one.
As regards the DC scenario, we analysed a version with an arbitrary number of

cryptographers. As in the original scenario [2], after all coins have been flipped each
cryptographer observes whether the coins he can see fell on the same side or not. If he
did not pay for dinner he states what he sees; if he did he states the opposite. Since our
model is interleaved we assume the announcements are made in sequence; this does not
affect the scenario. We used the algorithm to reduce the models preserving the protocol
specification [8]:

AG((odd ∧ ¬pay1)→((Kcrypt1

n∨
i=2

payi) ∧ (
n∧

i=2

¬Kcrypt1payi))),

where the atomic proposition ‘odd’ means that an odd number of announcements for
different sides of the coins were paid, and the atomic proposition payi holds when cryp-
tographer i is the payer. Table 1 displays the sizes of the full and reduced state spaces
and the execution times (in seconds) on a machine running Linux Fedora 10 x86 64 on
Intel CPU E4500 2.2GHz with 4GB memory. Notice that we get a substantial, certainly,
more than linear, reduction in the number of states.

Number of Full state space Reduced state space
cryptographers size time size time
3 864 0.30 448 0.12
4 6480 0.36 2160 0.13
5 46656 3.6 9984 0.86
6 326592 34 45248 5.2
7 2239488 308 202752 30
8 15116544 2827 900864 175

Table 1. Verification results for DC

The above results show the effectiveness of the technique.

6 Conclusions and Further work

As we argued in the introduction model checking multi-agent systems is now a rapidly
maturing area of research with techniques and tools being rapidly applied to the val-
idation of concrete MAS. While some techniques - notably ordered binary decision
diagrams and bounded model checking have been redefined in a MAS setting - others,
including abstraction and partial order reduction, are still largely unexplored. In partic-
ular, partial order reduction is one of the more traditional approaches, and it is therefore
surprising that its study has not been systematically carried out yet in a MAS setting.

In this paper we tried to continue the preliminary analysis suggested in [9]. While
only a notion of trace-equivalence is explored there, here we focused on interleaved
interpreted systems, for which we were able to give stuttering equivalence preservation
results, a linear algorithm preserving the validity on the models, as well as an implemen-
tation thereby evaluating the performance on two standard MAS scenarios. The results
are very encouraging. In both examples the reductions presented are very considerable,
possibly exponential.

Much remains to be done in this line. For instance, the partial order reduction tech-
nique presented here may be combined with ordered binary decision diagrams (for
example within the MCMAS toolkit [10]) so that models are reduced first and then
symbolically encoded. It should also be noted that the analysis presented here only ap-
plies to interleaved multi-agent systems and properties of LTLKJ

−X . The case of fully
synchronous systems still remains to be tackled as well an extension to partial order
reductions for CTL*K−X . This extension can be obtained by strengthening the notion

of stuttering bisimulation as well the conditions for defining a heuristic for the selection
of E(g) of [6].

References

1. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking multi-
agent programs with CASP. In CAV’03, volume LNCS 2725, pages 110–113. Springer-
Verlag, 2003.

2. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1(1):65–75, 1988.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

4. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms for
the verification of temporal properties. Formal Methods in System Design, 1(2/3):275–288,
1992.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

6. R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching time
logic model checking. Information and Computation, 150:132–152, 1999.

7. J. Halpern, R. van der Meyden, and M. Y. Vardi. Complete axiomatisations for reasoning
about knowledge and time. SIAM Journal on Computing, 33(3):674–703, 2003.

8. M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and M. Szreter.
Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptogra-
phers protocol. Fundamenta Informaticae, 63(2,3):221–240, 2006.

9. A. Lomuscio, W. Penczek, and H. Qu. Towards partial order reduction for model checking
temporal epistemic logic. In MoChArt, LNCS 5348, pages 106–121. Springer, 2009.

10. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification of
multi-agent systems. In Proceedings of CAV 2009 (to appear). Springer Verlag, 2009.

11. K. L. McMillan. A technique of a state space search based on unfolding. Formal Methods
in System Design, 6(1):45–65, 1995.

12. D. Peled. All from one, one for all: On model checking using representatives. In Proceedings
of the 5th International Conference on Computer Aided Verification, LNCS 697, pages 409–
423. Springer-Verlag, 1993.

13. D. Peled. Combining partial order reductions with on-the-fly model-checking. In Proceed-
ings of the 6th International Conference on Computer Aided Verification, LNCS 818, pages
377–390. Springer-Verlag, 1994.

14. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via
bounded model checking. Fundamenta Informaticae, 55(2):167–185, 2003.

15. A. Puri and P. Varaiya. Verification of hybrid systems using abstractions. In Hybrid Systems
II, LNCS 999, pages 359–369. Springer, 1995.

16. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model
checking via OBDDs. Journal of Applied Logic, 5(2):235–251, 2005.

17. R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proceedings of the 17th IEEE Computer Security Foundations Workshop
(CSFW’04), pages 280–291. IEEE Computer Society, 2004.

