
Computing Laboratory

STOCHASTIC GAMES FOR VERIFICATION
OF PROBABILISTIC TIMED AUTOMATA

Marta Kwiatkowska
Gethin Norman
David Parker

CL-RR-09-05

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

Probabilistic timed automata (PTAs) are used for formal modelling and verifi-
cation of systems with probabilistic, nondeterministic and real-time behaviour. For
non-probabilistic timed automata, forwards reachability is the analysis method of
choice, since it can be implemented extremely efficiently. However, for PTAs, such
techniques are only able to compute upper bounds on maximum reachability prob-
abilities. In this paper, we propose a new approach to the analysis of PTAs using
abstraction and stochastic games. We show how efficient forwards reachability tech-
niques can be extended to yield both lower and upper bounds on maximum (and min-
imum) reachability probabilities. We also present abstraction-refinement techniques
that are guaranteed to improve the precision of these probability bounds, providing a
fully automatic method for computing the exact values. We have implemented these
techniques and applied them to a set of large case studies. We show that, in com-
parison to alternative approaches to verifying PTAs, such as backwards reachability
and digital clocks, our techniques exhibit superior performance and scalability.

1 Introduction

Probabilistic behaviour occurs naturally in many real-time systems, either due to the use
of randomisation, or because of the presence of unreliable components. Prominent ex-
amples include communication protocols such as Bluetooth, IEEE 802.11 and FireWire,
which use randomised back-off schemes and are designed to function over faulty com-
munication channels. Another important class are security protocols, such as for non-
repudiation, anonymity and non-interference, where randomisation and timing are both
essential ingredients.

Probabilistic timed automata (PTAs) [10, 2, 17], which are finite state automata
extended with real-valued clocks and discrete probabilistic choice, are a natural formalism
for modelling and analysing such systems. Formal verification techniques for PTAs can
help to identify anomalies resulting from the subtle interplay between probabilistic, real-
time and nondeterministic aspects of these systems. A fundamental property of a PTA
is the minimum or maximum probability of reaching a particular class of states in the
model. This allows the expression of a wide range of useful properties, for example, “the
minimum probability that a data packet is correctly delivered with t seconds”.

There are three main existing algorithmic approaches to the verification of PTAs:
(i) forwards reachability [17, 6]; (ii) backwards reachability [18]; and (iii) digital clocks
[16]. Forwards reachability is based on a symbolic forwards exploration, similar to the
techniques implemented in state-of-the art tools for non-probabilistic timed automata
[7, 19]. This approach is appealing because it can be implemented extremely efficiently
with data structures such as difference-bound matrices (DBMs). However, in the context
of probabilistic timed automata, these techniques yield only an upper bound on maximum
reachability probabilities.

Backwards reachability [18] performs a state-space exploration in the opposite direc-
tion, from target to initial states. This computes exact values for both minimum and
maximum reachability probabilities; however, the operations required to implement it are
expensive, limiting its applicability. The digital clocks technique of [16] uses an efficient

1

language-level translation to a probabilistic model with finite state semantics. This also
gives precise values for minimum and maximum probabilities, but is only applicable to a
restricted class of PTAs.

PTAs are, because of their real-valued model of time, inherently infinite-state. The
three PTA verification techniques described above work by constructing a finite-state
Markov decision process (MDP) that can be analysed with existing tools and techniques.
This MDP can be viewed as an abstraction of the infinite-state semantics of the PTA. In
this paper, we take a new approach, using the ideas of [14] to represent PTA abstractions
as stochastic two-player games.

We first show how the forwards reachability technique of [17] can be generalised to
produce a stochastic game that yields lower and upper bounds on either minimum or
maximum reachability probabilities of PTAs. Then, using abstraction-refinement meth-
ods, we show how the stochastic game can be iteratively refined in order to tighten these
bounds. This gives a fully automatic technique to compute exact reachability probabil-
ities within a finite number of steps. Finally, we present a prototype tool implementing
these techniques that exhibits significantly better performance than other PTA verifica-
tion approaches. This paper is a full version of [15], including an appendix of proofs.

Related work. Existing PTA verification techniques are discussed above and a detailed
experimental comparison is included in Section 6. Also relevant is [4], which presents an
algorithm for computing time-abstracting bisimulation quotients of PTAs. Abstraction-
refinement approaches have been proposed for non-probabilistic timed automata, e.g. [8]
which uses bounded model checking and SAT-based techniques, [22] which is based on
the region graph construction, and [13] for verifying PLC automata using UPPAAL [19].

2 Markov decision processes and stochastic games

Markov decision processes (MDPs) are a widely used formalism for modelling systems
that exhibit both nondeterministic and probabilistic behaviour.

Definition 1 An MDP M is a tuple (S, S,Act ,StepsM) where S is a set of states, S ⊆ S
is the set of initial states, Act is a set of actions and StepsM : S×Act → Dist(S) is the
probabilistic transition function.

In each state s ∈ S of an MDP M, there is a nondeterministic choice between one or more
available actions a ∈ Act (those for which StepsM(s, a) is defined). After the choice of an
action a, a successor state is selected at random according to the probability distribution
StepsM(s, a). A path through M is a sequence of states selected in this fashion.

To reason about the MDP M, we use the notion of an adversary, which is a possible
resolution of all nondeterministic choices in M (formally, an adversary is a function from
finite paths to actions). For a fixed adversary A, we can define a probability measure
over the set of paths from a state s and, in particular, the probability pAs (F) of reaching a
target F⊆S from s under A. We are typically interested in the minimum and maximum
reachability probabilities for F :

pmin
M (F) def= infs∈S infA pAs (F) and pmax

M (F) def= sups∈S supA pAs (F) .

2

These values, and an adversary of M which produces them, can be computed with a
simple numerical computation called value iteration [20].

Stochastic two-player games [21, 5] extend MDPs by allowing two types of nondeter-
ministic choice, controlled by separate players. We use stochastic games in the manner
proposed in [14] to represent an abstraction of an MDP.

Definition 2 A stochastic game G is a tuple (S, S,Act ,StepsG) where: S is a set of
states, S ⊆ S is the set of initial states Act is a set of actions and StepsG : S×Act →
2Dist(S) is the probabilistic transition function.

Each transition of a stochastic game G comprises three choices: first, like for an MDP,
player 1 picks an available action a∈Act ; next, player 2 selects a distribution λ from the
set StepsG(s, a); finally, a successor state is chosen at random according to λ. A resolution
of the nondeterminism in G (the analogue of an MDP adversary) is a pair of strategies
σ1, σ2 for the players, under which we can define the probability pσ1,σ2

s (F) of reaching a
target F⊆S from a state s.

Intuitively, the idea of [14] is that, in a stochastic game G, representing an abstraction
of an MDP M, player 2 choices represent nondeterminism present in M and player 1 choices
represent additional nondeterminism introduced through abstraction. By quantifying
over strategies for players 1 and 2, we can obtain both lower bounds (lb) and upper
bounds (ub) on the minimum and maximum reachability probabilities of M. If G is
constructed from M using the approach of [14], then, in the case of maximum probabilities,
for example:

plb,max
G (F) 6 pmax

M (F) 6 pub,max
G (F)

where, in the stochastic game G:

plb,max
G (F) def= sups∈S infσ1 supσ2

pσ1,σ2
s (F)

pub,max
G (F) def= sups∈S supσ1

supσ2
pσ1,σ2
s (F)

Using similar techniques as those for MDPs, we can efficiently compute these values and
strategies for players 1 and 2 that result in them [5].

3 Probabilistic Timed Automata

Time, clocks and zones. Probabilistic timed automata model time using clocks, vari-
ables over the set R of non-negative reals. We assume a finite set X of clocks. A function
v : X → R is referred to as a clock valuation and the set of all clock valuations is denoted
by RX . For any v ∈ RX , t ∈ R and X ⊆ X , we use v+t to denote the clock valuation
which increments all clock values in v by t and v[X:=0] for the valuation in which clocks
in X are reset to 0.

The set of zones of X , written Zones(X), is defined by the syntax:

ζ ::= true | x 6 d | c 6 x | x+c 6 y+d | ¬ζ | ζ ∨ ζ

3

where x, y ∈ X and c, d ∈ N. A zone ζ represents the set of clock valuations v which
satisfy ζ, denoted v / ζ, i.e. those for which ζ resolves to true by substituting each clock
x with v(x).

We will use several classical operations on zones [9, 23]. The zone↗ζ contains all clock
valuations that can be reached from a valuation in ζ by letting time pass. Conversely,
↙ζ contains those that can reach ζ by letting time pass. For X⊆X , the zone [X:=0]ζ
contains the clock valuations which result in a valuation in ζ when the clocks in X are
reset to 0, while ζ[X:=0] contains the valuations obtained from those in ζ by resetting
these clocks to 0.

Syntax and semantics of PTAs. We now present the formal syntax and semantics of
probabilistic timed automata.

Definition 3 A PTA is a tuple P=(L, l,Act , inv , enab, prob) where:

• L is a finite set of locations and l ∈ L is the initial location;

• Act is a finite set of actions;

• inv : L→ Zones(X) is the invariant condition;

• enab : L×Act → Zones(X) is the enabling condition;

• prob : L×Act → Dist(2X×L) is the probabilistic transition function.

A state of a PTA is a pair (l, v) ∈ L×RX such that v / inv(l). In any state (l, v), a certain
amount of time t ∈ R can elapse, after which an action a ∈ Act is performed. The choice
of t requires that, while time passes, the invariant inv(l) remains continuously satisfied.
Each action a can be only chosen if it is enabled, that is, the zone enab(l, a) is satisfied by
v+t. Once action a is chosen, a set of clocks to reset and successor location are selected
at random, according to the distribution prob(l, a). We call each element (X, l′) ∈ 2X×L
in the support of prob(l, a) an edge and, for convenience, assume that the set of such
edges, denoted edges(l, a), is an ordered list 〈e1, . . . , en〉.

Definition 4 Let P=(L, l,Act , inv , enab, prob) be a PTA. The semantics of P is defined
as the (infinite-state) MDP [[P]] = (S, S,R×Act ,StepsP) where:

• S = {(l, v) ∈ L× RX | v / inv(l)} and S = {(l,0)};

• StepsP((l, v), (t, a)) = λ if and only if v+t′ / inv(l) for all 06t′6t,
v+t / enab(l, a) and, for any (l′, v′) ∈ S:

λ(l′, v′) =
∑{∣∣ prob(l, a)(X, l′) |X ∈ 2X ∧ v′ = (v+t)[X:=0]

∣∣} .
Each transition of the semantics of the PTA is a time-action pair (t, a), representing time
passing for t time units, followed by a discrete a-labelled transition. If StepsP((l, v), (t, a))
is defined and edges(l, a) = 〈(l1, X1), . . . , (ln, Xn)〉, we write (l, v)

t,a−→ 〈s1, . . . , sn〉 where
si = (li, (v+t)[Xi:=0]) for all 1 6 i 6 n.

4

We make several standard assumptions about probabilistic timed automata. Firstly,
we restrict our attention to structurally non-Zeno automata [24]. This class of models,
which can be identified syntactically and in a compositional fashion [25], guarantees time-
divergent behaviour. Secondly, for technical reasons, we assume all zones appearing in a
PTA are diagonal-free [3].

Probabilistic Reachability. The minimum and maximum probabilities of reaching,
from the initial state of a PTA P, a certain target F ⊆ L are:

pmin
P (F) = pmin

[[P]] (SF) and pmax
P (F) = pmax

[[P]] (SF)

where SF = {(l, v) | v / inv(l) ∧ l ∈ F}. We can easily consider more expressive targets,
that refer to both locations and clock values, through a simple syntactic modification of
the PTA [17].

Symbolic states and operations. In order to represent sets of PTA states, we use the
concept of a symbolic state: a pair z = (l, ζ), comprising a location l and a zone ζ over
X , representing the set of PTA states {(l, v) | v / ζ}. We use the notation (l, v) ∈ (l, ζ) to
denote inclusion of a PTA state in a symbolic state.

We will use the time successor and discrete successor operations of [9, 23]. For a
symbolic state (l, ζ), action a, and edge e = (X, l′) ∈ edges(l, a), we define:

• tsuc(l, ζ) def= (l, inv(l)∧ ↗ζ) is the time successor of (l, ζ);

• dsuc[a, e](l, ζ) def= (l′, (ζ∧enab(l, a))[X:=0]∧inv(l′)) is the discrete successor of (l, ζ)
with respect to e;

• post[a, e](l, ζ) def= tsuc(dsuc[a, e](l, ζ)) is the post of (l, ζ) with respect to e.

The c-closure of a zone ζ is obtained by removing any constraint that refers to integers
greater than c. For a given c, there are only a finite number of c-closed zones. For the
remainder of this paper, we assume that all zones are c-closed where c is the largest
constant appearing in the PTA under study.

4 Forwards Reachability for PTAs

In this section, we begin by describing the approach of [17], which we will refer to as MDP-
based forwards reachability. This computes only upper bounds on maximum reachability
probabilities of a PTA. Subsequently, we will propose a new algorithm, based on stochastic
games, which addresses these limitations.

4.1 MDP-based forwards reachability

The MDP-based forwards reachability approach of [17] works by building an abstraction
of a PTA P. This abstraction is represented by an MDP M whose state space is a set
Z of symbolic states, i.e. each state of M represents a set of states of the infinite-state
MDP semantics [[P]]. The algorithm of [17] is shown in Figure 1. For the purposes of

5

BuildReachGraph(P, F)

1 Z := ∅
2 Y := {tsuc(l,0)}
3 while Y 6= ∅
4 choose (l, ζ) ∈ Y
5 Y := Y \ {(l, ζ)}
6 Z := Z ∪ {(l, ζ)}
7 for a ∈ Act such that enab(l, a) ∧ ζ 6= ∅
8 for ei ∈ edges(l, a) = 〈e1, . . . , en〉
9 (l′i, ζ

′
i) := post[(l, a), ei](l, ζ)

10 if (l′i, ζ
′
i) 6∈ Z and l′i 6∈ F then Y := Y ∪ {(l′i, ζ ′i)}

11 R := R ∪ {((l, ζ), a, 〈(l′1, ζ ′1), . . . , (l′n, ζ
′
n)〉)}

12 return (Z, R)

BuildMDP(Z, R)

1 Z := {(l, ζ) ∈ Z | l = l}
2 for (l, ζ) ∈ Z and θ ∈ R(l, ζ)
3 StepsM((l, ζ), θ) := λθ
4 return M = (Z, Z, R,StepsM)

Figure 1: Algorithm for MDP-based forwards reachability, based on [17]

this presentation, we have reformulated the algorithm into: (i) the construction of a
reachability graph over the set of symbolic states Z; and (ii) the construction of an MDP
M from this graph.

The algorithm to build this reachability graph is based on the well-known forwards
reachability algorithm for non-probabilistic timed automata [7, 19]. It performs a for-
wards exploration through the automata, successively computing symbolic states using
the post operation. One important difference is that, in the probabilistic setting, on-the-
fly techniques cannot be used: the state-space exploration is exhaustive. This is because
the aim is to determine, not just the existence of a path to the target, but the probability
of reaching the target. For this, an MDP containing all such paths is constructed and
analysed.

A reachability graph captures information about the transitions in a PTA. It comprises
a multiset1 Z of symbolic states and a set R ⊆ Z×Act×Z+ of symbolic transitions. Each
symbolic transition θ ∈ R takes the form:

θ =
(
(l, ζ), a, 〈(l1, ζ1), . . . , (ln, ζn)〉

)
where n = |edges(l, a)|. Intuitively, θ represents the possibility of taking action a from a
PTA state in (l, ζ) and, for each edge (Xi, li) ∈ edges(l, a), reaching a state in (li, ζi). A
key property of symbolic transitions is the notion of validity :

valid(θ) def= ζ ∧ ↙
(
enab(l, a)∧ (∧ni=1 ([Xi:=0]ζi))

)
1The use of a multiset is a technical requirement, later used for abstraction refinement.

6

which gives precisely the set of clock valuations satisfying ζ from which it is possible to
let time pass and perform the action a such that taking the ith edge (Xi, li) gives a state
in (li, ζi). A symbolic transition θ is valid if the zone valid(θ) is non-empty. This leads
to the following formal definition of a reachability graph.

Definition 5 A reachability graph for a PTA P=(L, l,Act , inv , enab, prob) and target
F , is a pair (Z, R) where:

• Z ⊆ L×Zones(X) is a multiset of symbolic states where {s ∈ z | z ∈ Z} = S;

• R ⊆ Z×Act×Z+ is a set of valid symbolic transitions;

and, if z = (l, ζ) ∈ Z, l 6∈ F , s ∈ z and s
t,a−→ 〈s1, . . . , sn〉, then R contains a symbolic

transition (z, a, 〈z1, . . . , zn〉) such that si ∈ zi for all 1 6 i 6 n.

For any PTA P and target F , it follows from the definition of post that algorithm
BuildReachGraph(P, F) in Figure 1 returns a (unique) reachability graph for (P, F). How-
ever, the above conditions do not imply the uniqueness of reachability graphs, and there
may exist many other such graphs for (P, F).

Given a reachability graph (Z, R) we can construct an MDP M with state space Z using
the symbolic transitions in R to build the transitions of M. More precisely, a symbolic
transition θ = ((l, ζ), a, 〈(l1, ζ1), . . . , (ln, ζn)〉) induces a probability distribution λθ over
symbolic states Z where for any (l′, ζ ′) ∈ Z:

λθ(l′, ζ ′)
def=
∑{∣∣ prob(l, a)(ei) | ei ∈ edges(l, a) ∧ ζi=ζ ′

∣∣} .
Using these distributions, the algorithm BuildMDP(Z, R) in Figure 1 constructs an MDP
M, analysis of which yields bounds on the behaviour of P.

Theorem 4.1 Let P be a PTA with target F . If (Z, R) is a reachability graph for (P, F)
and M is the MDP returned by BuildMDP(Z, R) (see Figure 1), then pmin

M (ZF) 6 pmin
P (F)

and pmax
P (F) 6 pmax

M (ZF) where ZF = F×Zones(X).

This theorem extends [17], by establishing the result for any reachability graph, not just
that returned by BuildReachGraph and, by restricting to structurally non-Zeno PTAs, also
yields lower bounds on minimum reachability probabilities.

Example 4.2 We illustrate these ideas using the simple PTA P in Figure 2(a). We
use the standard graphical notation for PTAs and omit probability 1 labels. Applying
BuildReachGraph(P, {l3}) (see Figure 1) yields the symbolic states:

Z = {(l0, x=y), (l1, x=y), (l1, y<x−2), (l2, x6y), (l3, x=y)}

and the set of symbolic transitions R. From the first two symbolic states, for example, we
have R(l0, x=y) = {θa} and R(l1, x=y) = {θb, θc} where:

θa =
(
(l0, x=y), a, 〈(l1, x=y), (l2, x6y)〉

)
θb =

(
(l1, x=y), b, 〈(l1, x=y)〉

)
, θc =

(
(l1, x=y), c, 〈(l3, x=y)〉

)
7

l3, true

l0, true

a true

0.40.6
x:=0

l1, true l2, true

b

x>2

by:=0

y>2
y:=0

c c x=0∧y=1
y:=0x=0

(a) PTA

0.6 0.4

(l1, x=y) (l2, x6y)

(l1, y<x−2)

(l0, x=y)

(l3, x=y)

(b) MDP

Figure 2: Analysis of a PTA through MDP-based forwards reachability

BuildGame(Z, R)

1 Z = {(l, ζ) ∈ Z | l = l}
2 for (l, ζ) ∈ Z
3 for Θ ⊆ R(l, ζ) such that Θ 6= ∅ and valid(Θ)
4 StepsG((l, ζ),Θ) := {λθ | θ ∈ Θ}
5 return G = (Z, Z, 2R,StepsG)

Figure 3: Algorithm to construct a stochastic game from a reachability graph

The resulting MDP is shown in Figure 2(b). The maximum probability of reaching location
l3 in the PTA is 0.6, which results from taking action a in l0 immediately and, if l1 is
reached, proceeding straight to l3. An alternative is to wait for 1 time unit in l0 and then
take a, reaching l3 via l2, however, this results in a lower probability of 0.4. An upper
bound on the maximum probability for the PTA is obtained from the maximum probability
of reaching (l3, x=y) in the MDP. The resulting value is 1. This is because the symbolic
states for locations l1 and l2 are too coarse to preserve the precise time that action a is
taken.

4.2 Game-based forwards reachability

The main limitation of the MDP-based forwards reachability algorithm is that it only
provides lower bounds for minimum and upper bounds for maximum reachability proba-
bilities. We now describe how to construct, from a reachability graph, a stochastic game
G that yields both lower and upper bounds. The game G is, like the MDP in the previous
section, an abstraction of the infinite-state MDP semantics of the PTA, whose state space
is the symbolic states Z.

We utilise the approach of [14] to represent an abstraction of an MDP as a stochastic
two-player game. The basic idea is that the two players in the game represent nondeter-
minism introduced by the abstraction and nondeterminism from the original model. In
a symbolic state (l, ζ) of the game abstraction of a PTA, player 1 first picks a PTA state
(l, v) ∈ (l, ζ) and then player 2 makes a choice over the actions that become enabled after
letting time pass from (l, v).

In order to construct such a game from a reachability graph (Z, R), we first extend the

8

(l0, x=y)

(l3, x=y)

(l2, x6y)(l1, x=y)

0.40.6

(l1, y<x−2)

(a) From reachability graph

(l2, x6y)(l1, x=y>0)(l1, x=y=0)

(l1, y<x−2)(l3, x=y)

(l0, x=y)

0.6
0.4

0.40.6

(b) After one refinement

Figure 4: Stochastic games for the PTA example of Figure 2

notion of validity to sets of symbolic transitions with the same source. For any symbolic
state (l, ζ) ∈ Z and set of symbolic transitions Θ ⊆ R(l, ζ), let:

valid(Θ) def= (∧θ∈Θvalid(θ)) ∧
(
∧θ∈R(l,ζ)\Θ¬valid(θ)

)
.

By construction, valid(Θ) identifies precisely the clock valuations v / ζ such that, from
(l, v), it is possible to perform a transition encoded by any symbolic transition θ ∈ Θ,
but it is not possible to perform a transition encoded by any other symbolic transition of
R(l, ζ).

The algorithm BuildGame in Figure 3 describes how to construct, from a reachability
graph R, a stochastic game with symbolic states Z. In a state z of the game, player 1
chooses between any non-empty valid set of symbolic transitions Θ ⊆ R(z). Player 2
then selects a symbolic transition θ ∈ Θ. As the following result demonstrates, this game
yields lower and upper bounds on either minimum or maximum reachability probabilities
of the PTA.

Theorem 4.3 Let P be a PTA with target F . If (Z, R) is a reachability graph for (P, F)
and G is the stochastic game returned by BuildGame(Z, R) (see Figure 3), then plb,?

G (ZF) 6

p?P(F) 6 pub,?
G (ZF) for ? ∈ {min,max}.

Example 4.4 We return to the PTA from Figure 2 and the reachability graph constructed
in Example 4.2. The corresponding stochastic game is shown in Figure 4(a). As for PTAs
and MDPs, we draw probability distributions as arrows grouped by an arc, omitting the
labelling of probability 1 transitions. A set of distributions emanating from a black circle
indicates a player 2 choice; the outgoing edges from each symbolic state represent a player
1 choice.

Consider, the symbolic state (l1, x=y), for which there are two symbolic transitions
θb and θc (see Example 4.2). Since valid(θb)=(x=y) and valid(θc)=(x=y=0), we have
valid({θb})=(x=y>0), valid({θc})=∅ and valid({θb, θc})=(x=y=0). This tells us that
there are two classes of PTA states in (l1, x=y): those in which both actions b and c
become enabled, and those in which only b becomes enabled. Thus, in the game state (see
Figure 4(a)), we see that player 1 chooses between these two classes and then player 2
chooses an available action.

9

Refine(Z, R, (l, ζ),Θlb ,Θub)

1 ζlb := valid(Θlb)
2 ζub := valid(Θub)
3 Znew := {(l, ζlb), (l, ζub), (l, ζ∧¬(ζlb∨ζub))} \ {∅}
4 Zref := (Z \ {(l, ζ)})] Znew

5 Rref := ∅
6 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R
7 if (l, ζ) 6∈ {z0, z1, . . . , zn} then
8 Rref := Rref ∪ {θ}
9 else

10 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | z′i ∈ Znew if zi = (l, ζ) and z′i = zi o/wise}
11 for θnew ∈ Θnew such that valid(θnew) 6= ∅
12 Rref := Rref ∪ {θnew}
13 return (Zref, Rref)

Figure 5: Algorithm to refine symbolic state (l, ζ) in reachability graph (Z, R)

Using Theorem 4.3, the stochastic game in Figure 4(a) gives bounds on the maximum
probability of reaching l3 in the PTA. The upper bound (as for the MDP) is 1 as, after
either branch of the initial probabilistic choice, player 1 can make a choice which allows
l3 to be reached with probability 1. The lower bound, however, is 0 because player 1 can
also, in both cases, make l3 unreachable.

As the above example illustrates, it is possible that the difference between the lower
and upper bounds from the game is too great to provide useful information. In the next
section, we will address this issue by introducing a way to refine the abstraction to reduce
the difference between the bounds.

5 Abstraction Refinement

The game-based abstraction approach of [14] has been extended with refinement tech-
niques in [11, 12]. Inspired by non-probabilistic counterexample-guided abstraction re-
finement, the idea is that an initially coarse abstraction is iteratively refined until it is
precise enough to yield useful verification results. Crucial to this approach is the use of
the lower and upper bounds provided by a stochastic game abstraction as a quantitative
measure of the preciseness of the abstraction.

The refinement algorithm. Our refinement algorithm takes a reachability graph (Z, R),
splits one or more of the symbolic states in Z and then modifies the symbolic transitions of
R accordingly. This process is guided by the analysis of the stochastic game constructed
from (Z, R), i.e. the bounds for the probability of reaching the target and player 1 strategies
that attain these bounds.

We now outline the refinement of a single symbolic state (l, ζ) for which the bounds

10

AbstractRefine(P, F, ?, ε)

1 (Z, R) := BuildReachGraph(P, F)
2 G := BuildGame(Z, R)
3 (plb,?

G , pub,?
G , σlb

1 , σ
ub
1) := AnalyseGame(G, F, ?)

4 while pub,?
G −plb,?

G > ε
5 choose (l, ζ) ∈ Z
6 (Z, R) := Refine(Z, R, (l, ζ), σlb

1 (l, ζ), σub
1 (l, ζ))

7 G := BuildGame(Z, R)
8 (plb,?

G , pub,?
G , σlb

1 , σ
ub
1) := AnalyseGame(G, F, ?)

9 return [plb,?
G , pub,?

G]

Figure 6: Abstraction-refinement loop to compute reachability probabilities

differ and for which distinct player 1 strategies yield each bound.2 A player 1 strategy
chooses, for any state in the stochastic game, an action available in the state. By con-
struction, an available action in (l, ζ) is a valid set of symbolic transitions from R(l, ζ).
We let Θlb ,Θub ⊆ R(l, ζ) denote the distinct player 1 strategy choices for the lower and
upper bound respectively. Since the validity conditions for Θlb and Θub identify precisely
the clock valuations in ζ for which the corresponding transitions of [[P]] are possible, we
split (l, ζ) into:(

l, valid(Θlb)
)
,
(
l, valid(Θub)

)
and

(
l, ζ ∧ ¬(valid(Θlb) ∨ valid(Θub))

)
.

By construction, valid(Θlb) and valid(Θub) are both non-empty. Furthermore, since Θlb 6=
Θub , from the definition of validity, we have valid(Θ)∧ valid(Θ′) = ∅, and hence the split
of (l, ζ) produces a strict refinement of Z.

The complete refinement algorithm is shown in Figure 5. Lines 1–4 refine Z, as just
described, and lines 5–12 update the set of symbolic transitions R. The result is a new
reachability graph, for which the corresponding stochastic game is a refined abstraction
of the PTA, satisfying the following properties.

Theorem 5.1 Let P be a PTA with target F and (Z, R) be a reachability graph for
(P, F). If (Zref, Rref) is the result of applying algorithm Refine (see Figure 5) to (Z, R),
G = BuildGame(Z, R) and Gref = BuildGame(Zref, Rref), then:

(i) (Zref, Rref) is a reachability graph for (P, F);

(ii) plb,?
G (ZF) 6 plb,?

Gref(ZF) and pub,?
Gref (ZF) 6 pub,?

G (ZF) for ? ∈ {min,max}.

This refinement scheme, applied in a iterative manner, provides a way of computing exact
values for minimum or maximum reachability probabilities of a PTA. This algorithm,
outlined in Figure 6, starts with the reachability graph constructed through forwards
reachability and then repeatedly: (i) builds a stochastic game; (ii) solves the game to

2From the results of [14] such a state exists when the bounds differ in some state.

11

obtain lower and upper bounds; and (iii) refines the reachability graph, based on an
analysis of the game. The iterative process terminates when the difference between the
bounds falls below a given level of precision ε. In fact, as the following result states, this
process is guaranteed to terminate, in a finite number of steps, with the precise answer.

Theorem 5.2 Let P be a PTA with target F and ? ∈ {min,max}. The algorithm
AbstractRefine(P, F, ?, 0) (see Figure 6) terminates after a finite number of steps and
returns [plb,?

G , pub,?
G] where plb,?

G = p?P(F) = pub,?
G .

Example 5.3 We return to our running example (see Figures 2 and 4) and consider
the refinement of (l1, x=y), from which the lower and upper bounds on the maximum
probability of reaching location l3 are 0 and 1. The player 1 strategies (see Example 4.4)
to achieve these bounds select Θlb = {θb} and Θub = {θb, θc}, respectively. The validity
conditions for these choices are (x=y>0) and (x=y=0), and hence (l1, x=y) is divided
into z1 = (l1, x=y>0) and z2 = (l1, x=y).

We then update the set R, as described in Figure 5, splitting symbolic transitions whose
source or target is (l1, x=y). For example, θa, θb and θc (see Example 4.2) are split into,
for i = 1, 2:

θia=
(
(l0, x=y), a, 〈zi, (l2, x6y)〉

)
, θib=

(
zi, b, 〈zi〉

)
and θic=

(
zi, c, 〈(l3, x=y=0)〉

)
.

After removing θ2
c , which is not valid, the resulting stochastic game is shown in Fig-

ure 4(b). While this still yields bounds of [0, 1] for the initial state, two subsequent refine-
ment tighten this to [0.6, 1.0] and then [0.6, 0.6].

6 Experimental Results

Implementation. We have implemented a prototype PTA model checker based on the
techniques in this paper. It uses difference-bound matrices (DBMs) to represent zones.
Since refinement can introduce non-convex zones, we also employ lists of DBMs. Our
tool takes a textual description of a PTA (or the parallel composition of several PTAs)
and a set of target locations. It then executes the abstraction-refinement loop described
in Section 5 to compute either the minimum or maximum reachability probability.

Several aspects of the abstraction-refinement implementation merit further discussion.
In particular, the refinement process presented in Section 5 discusses the refinement of a
single symbolic state. Because each refinement requires a potentially expensive numerical
solution phase, an efficient scheme to select which state (or states) are to be split is
essential. In fact, we found it possible to obtain very good performance with relatively
simple heuristics. In the results presented here, we simply refine all states for which the
lower and upper bounds differ.

Our implementation includes several useful optimisations. Firstly, we modify the
BuildGame algorithm so that it only rebuilds states of a stochastic game that have actually
been modified during refinement. Secondly, we use the techniques described in [11] to
re-use numerical results between refinement iterations, reducing the amount of numerical
solution required.

12

Case study Game-based Backwards Digital clocks Min/Max
(parameters) verification reachability [18] [16] reachability
[min /max] Iters States Time (s) States Time (s) States Time (s) probability

csma
(max backoff

collisions)
[max]

2 4 10 6,476 3.9 243 20.7 n/a n/a 0.143555
2 8 10 18,196 8.9 575 77.8 n/a n/a 0.005259
4 4 10 34,826 20.5 303 1443.7 n/a n/a 0.076904
4 8 10 239,298 431.4 time out time out n/a n/a 1.65e-5

csma
abst

(deadline)
[min]

∞ 0 117 0.2 0 8.7 5240 21.2 1.0
1000 0 6,392 1.9 366 68.2 1,876,105 71.2 0.0
2000 37 24,173 20.7 722 367.8 6,570,692 651.8 0.869791
3000 76 79,608 448.0 1,736 1436.3 11,780,692 1951.9 0.999820

firewire
(deadline)

[min]

∞ 0 257 0.7 127 26.4 212,268 39.7 1.0
25 0 1,369 2.0 1,004 839.5 14,089,691 324.6 0.5
50 17 4,215 10.6 3,096 3149.9 time out time out 0.78125
75 34 10,252 83.4 time out time out mem out mem out 0.931641

firewire
abst

(deadline)
[min]

∞ 0 10 0.03 0 1.0 776 0.3 1.0
50 7 205 0.25 63 2.4 298,010 14.5 0.78125
100 19 1,023 1.76 180 3.8 686,008 36.4 0.974731
200 40 9,059 26.1 640 26.4 1,462,010 149.2 0.999630

zeroconf
(deadline)

[max]

∞ 0 26 0.17 19 0.22 357 1.69 0.001302
100 0 132 0.16 15 0.32 8,423 0.93 6.52e-4
150 13 380 0.44 101 0.72 23,888 1.71 0.001073
200 17 670 0.73 274 4.77 41,713 2.92 0.001222

nrp
honest

(deadline)
[min]

∞ 0 5 0.04 0 0.70 n/a n/a 1.0
40 19 428 1.80 33 5.25 n/a n/a 0.612580
80 39 1,448 3.56 63 6.18 n/a n/a 0.864915
100 49 2,183 5.35 78 6.97 n/a n/a 0.920234

nrp
malicious
(deadline)

[max]

∞ 11 351 1.3 62 1.5 n/a n/a 0.105658
5 3 1,663 1.5 75 2.9 n/a n/a 0.1
10 15 8,080 11.1 408 117.3 n/a n/a 0.105444
20 7 49,622 218.1 1,108 1606.5 n/a n/a 0.105657

Table 1: Performance statistics and comparisons for game-based PTA verification

Experimental results. We evaluate our implementation on 7 large PTA case studies
from the literature: (i) csma and csma abst, two models of the IEEE 802.3 CSMA/CD
protocol; (ii) firewire and firewire abst, two models of the IEEE 1394 FireWire root
contention protocol; (iii) zeroconf, the Zeroconf network configuration protocol; and (iv)
nrp honest and nrp malicious, two model of Markowitch & Roggeman’s non-repudiation
protocol. Full details of all these case studies, their parameters, and the properties checked
are available.3

We present a comparison of our implementation with the two other existing techniques
for reachability analysis of PTAs: backwards reachability [18] and digital clocks [16]. For
the former, we use the implementation of [18] which uses PRISM as a back-end to analyse
MDP. For the latter, we use a simple language-level translation. We do not consider
the MDP-based forwards reachability algorithm [17, 6] since this does compute exact
probability values and is thus not directly comparable. All experiments were run on a
2GHz PC with 2GB RAM. Any run exceeding a time-limit of 1 hour was disregarded.

Table 1 summarises the experimental results. We give, for each PTA and each appli-
cable analysis technique,4 the total time required and the size of the probabilistic model

3http://www.prismmodelchecker.org/files/formats09/
4The digital clocks approach is not applicable to several of the case studies since the PTAs contain

zones with strict constraints.

13

constructed. For backwards reachability and digital clocks, this model is an MDP; for
our approach, it is a stochastic game (we give the size of the final game constructed
during abstraction-refinement). For backwards reachability, the time given includes both
generation of an MDP and its solution in PRISM; for digital clocks, the value is just the
solution time in PRISM. For our game-based verification approach, we give the total time
for all steps: reachability graph generation and multiple iterations of game construction,
solution and analysis. The number of refinement steps required is also shown; in all cases,
we refine until precise values are obtained (i.e. ε=0). Finally, Table 1 also gives the actual
reachability probability for each model checking query and whether this a minimum or
maximum value.

Analysis of the results. Our game-based approach to PTA verification performs ex-
tremely well. In all cases, it is faster than both backwards reachability and digital clocks,
often by several orders of magnitude. We are also able to analyse PTAs too large to be
verified using the digital clocks approach.

In terms of the size of the probabilistic models generated by the three techniques, we
find that backwards reachability usually yields the smallest state spaces. This is because it
only considers symbolic states for which the required probability is greater than 0. Thanks
to the fact that our approach avoids some of the complex zone operations required for
backwards reachability, we are able to consistently outperform it, despite this fact. On
PTAs with a very small number of clocks (e.g. firewire abst has only 2), the overhead
of these complex operations is reduced and backwards reachability performs better. By
contrast, for PTAs with more clocks (firewire has 7 and csma has 5), the opposite is true.

The reason that our game-based technique outperforms the digital clocks approach is
that the latter generates models with much larger state spaces, which are slow to analyse,
even with the efficient symbolic techniques of PRISM.

7 Conclusions

We have presented a novel technique for the verification of probabilistic automata, based
on the use of two-player stochastic games to represent abstractions of their semantics. Our
approach generates lower and upper bounds for either minimum or maximum reachability
probabilities and then iteratively refines the game to compute the exact values in a finite
number of steps. We have implemented this process and shown that it outperforms
existing PTA verification techniques on a wide range of large case studies.

Our approach can easily be extended to compute expected-reward properties for the
case where rewards are associated with transitions of a PTA. Furthermore, we plan to
adapt our techniques to compute lower and upper bounds on more general classes of
rewards properties. Another direction of future work is the investigation of improved
abstraction-refinement schemes. The simple approach adopted in this paper works very
well but we anticipate that there is considerable scope for improving performance further
in this way. Finally, we also plan to apply this approach to the verification of real-time
properties of software.

14

Acknowledgments

The authors are supported in part by EPSRC grants EP/D07956X and EP/D076625.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Inf. and
Comp., 104(1):2–34, 1993.

[2] D. Beauquier. Probabilistic timed automata. Theoretical Computer Science,
292(1):65–84, 2003.

[3] P. Bouyer. Untameable timed automata! In Proc. STACS’03, volume 2607 of LNCS,
pages 620–631. Springer, 2003.

[4] T. Chen, T. Han, and J.-P. Katoen. Time-abstracting bisimulation for probabilistic
timed automata. In Proc. TASE’08, pages 177–184. IEEE CS Press, 2008.

[5] A. Condon. The complexity of stochastic games. Inf. and Comp., 96(2):203–224,
1992.

[6] C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. International Journal on
Software Tools for Technology Transfer (STTT), 5(2–3):221–236, 2004.

[7] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Systems
III, volume 1066 of LNCS, pages 208–219. Springer, 1996.

[8] H. Dierks, S. Kupferschmid, and K. Larsen. Automatic abstraction refinement for
timed automata. In Proc. FORMATS’07, volume 4763 of LNCS, pages 114–129.
Springer, 2007.

[9] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Inf. and Comp., 111(2):193–244, 1994.

[10] H. Jensen. Model checking probabilistic real time systems. In Proc. 7th Nordic
Workshop on Programming Theory, pages 247–261, 1996.

[11] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. A game-based
abstraction-refinement framework for Markov decision processes. Technical Report
RR-08-06, Oxford University Computing Laboratory, February 2008.

[12] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refinement
for probabilistic software. In Proc. VMCAI’09, volume 5403 of LNCS, pages 182–197.
Springer, 2009.

[13] S. Kemper and A. Platzer. SAT-based abstraction refinement for real-time systems.
In Proc. FACS 2006, volume 182 of ENTCS, pages 107–122, 2007.

15

[14] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov
decision processes. In Proc. QEST’06, pages 157–166. IEEE CS Press, 2006.

[15] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verication of
probabilistic timed automata. In Proc. 7th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’09), LNCS. Springer, 2009.
To appear.

[16] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of
probabilistic timed automata using digital clocks. Formal Methods in System Design,
29:33–78, 2006.

[17] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

[18] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking
for probabilistic timed automata. Inf. and Comp., 205(7):1027–1077, 2007.

[19] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[20] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

[21] L. Shapley. Stochastic games. In Proc. National Academy of Science, volume 39,
pages 1095–1100, 1953.

[22] M. Sorea. Lazy approximation for dense real-time systems. In Proc. FORMAT-
S/FTRTFT’04, volume 3253 of LNCS, pages 363–378. Springer, 2004.

[23] S. Tripakis. The formal analysis of timed systems in practice. PhD thesis, Université
Joseph Fourier, 1998.

[24] S. Tripakis. Verifying progress in timed systems. In Proc. ARTS’99, volume 1601 of
LNCS, pages 299–314. Springer, 1999.

[25] S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness
efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

16

Appendix

This appendix contains provides proofs of the four theorems stated in the paper. Through-
out, we fix a PTA P = (L, l,Act , inv , enab, prob) with MDP semantics [[P]] = (S, S,R×Act ,StepsP)
and target F ⊆ L.

A Proof of Theorem 4.1

Let (Z, R) be a reachability graph of (P, F) and M = (Z, Z, R,StepsM) be the MDP con-
structed from BuildMDP(Z, R). The proof of Theorem 4.1 follows similarly to [17] and
relies on proving that for any s ∈ S and z ∈ Z such that s ∈ z:

pmin
z (ZF) 6 pmin

s (SF) and pmax
s (SF) 6 pmax

z (ZF) .

This is a direct result of the following lemma.

Lemma A.1 For any adversary A of [[P]] and s ∈ S, there exists an adversary BA of M
where pAs (SF) = pBA

z (ZF) for all z ∈ Z such that s ∈ z.

Proof A.2 Consider any adversary A of [[P]], s ∈ S and z ∈ Z such that s ∈ z. We
construct the adversary BA by matching the transitions in [[P]] with transitions in M such
that the targets of [[P]] are elements of the targets of M. Supposing, in state s, under A
the action (t, a) ∈ R×Act is chosen, that is the transition

s
(t,a)−−−→ 〈s1, . . . , sn〉

is performed, then since (Z, R) is a reachability graph (see Definition 5) there exists a
symbolic transition θ = (z, a, 〈z1, . . . , zn〉) ∈ R such that si ∈ zi for all 16i6n and we let
BA choose θ in state z of M. The fact that the reachability probabilities are the same for A
and BA then follows from the fact that the corresponding transitions are constructed from
the same distribution, namely prob(l, a) when s is of the form (l, v) for some v ∈ RX . ut

B Proof of Theorem 4.3

Let (Z, R) be a reachability graph of (P, F) and G = (Z, Z, 2R,StepsG) be the stochastic
game constructed from BuildGame(Z, R). Before we give the proof of Theorem 4.3 we
require the following lemmas.

Lemma B.1 For any adversary A of [[P]] and s ∈ S there exists a strategy pair (σ1, σ2)
of G where pAs (SF) = pσ1,σ2

z (ZF) for all z ∈ Z such that s ∈ z.

Proof B.2 Consider any adversary A of [[P]], s = (l, v) ∈ S and z ∈ Z such that s ∈ z.
The proof follows similarly to Lemma A.1, except that we construct a strategy pair of the
game G which mimics the choices made by BA. More precisely, if BA chooses θ, then we
let σ1 choose any Θ such that θ ∈ Θ and let σ2 choose θ from Θ. The existence of such

17

a Θ follows from the fact that we keep only valid symbolic transitions. Now, for such a
strategy pair, since they mimic the choices of BA we have:

pσ1,σ2
z (ZF) = pBA

z (ZF)

which, combined with Lemma A.1, completes the proof. ut

Lemma B.3 for any abstract state z ∈ Z and player 2 strategy σ2 of G there exists an
adversary A of [[P]] where:

infσ1 p
σ1,σ2
z (ZF) 6 pAs (SF) and supσ1

pσ1,σ2
z (ZF) > pAs (SF)

for all s ∈ S such that s ∈ z.

Proof B.4 Consider any player 2 strategy σ2 of G, z ∈ Z and s = (l, v) ∈ z. By the

assumptions we make on PTAs, s
(t,a)−−−→ 〈s1, . . . , sn〉 for some (t, a) ∈ R×Act. Now, since

(Z, R) is a reachability graph of (P, F), there exists θ = (z, a, 〈z1, . . . , zn〉) ∈ R such that
si ∈ zi for all 16i6n. It then follows by definition that v / valid(θ), and hence there
exists Θ such that v / valid(Θ). Now we let σ1 be the player 1 strategy which chooses
Θ. Supposing σ2 chooses some θ′ = (z, a′, 〈z′1, . . . , z′m〉) ∈ Θ then, since v / valid(Θ),
it follows by definition that v / valid(θ′). Furthermore, since v ∈ valid(θ′), there exists

t′ ∈ R such that s
(t′,a′)−−−→ 〈s′1, . . . , s′m〉 and s′i ∈ z′i for all 16i6m. Now we construct A

to choose (a′, t′) in state s. Repeating this process inductively on the path of the game we
arrive at a player 1 strategy σ1 and adversary A of [[P]] such that

pσ1,σ2
z (ZF) = pAs (SF)

which is sufficient to complete the proof. ut

Proof B.5 (of Theorem 4.3) From Lemma B.1 it follows that for any s ∈ S:

infσ1,σ2 p
σ1,σ2
z (ZF) 6 infA P A

s (SF)

supA p
A
s (SF) 6 supσ1,σ2

pσ1,σ2
z (ZF)

for all z ∈ Z such that s ∈ z, and hence p lb,min
G (ZF) 6 pmin

P (SF) and pmax
P (SF) 6

p ub,max
G (ZF). On the other hand, using Lemma B.3, we have for any s ∈ S and z ∈ Z

such that s ∈ z:

infA pAs (SF) 6 infσ2 supσ1
pσ1,σ2
z (ZF) = supσ1

infσ2 p
σ1,σ2
z (ZF)

where the second step follows from properties of stochastic games [5]. Similarly, we can
show that:

infσ1 supσ2
pσ1,σ2
z (ZF) 6 supA p

A
s (SF)

and therefore pmin
P (ZF) 6 p ub,min

G (ZF) and p lb,max
G (ZF) 6 pmax

P (SF) which completes the
proof.

18

C Proof of Theorem 5.1

Let (Z, R) and G = (Z, Z, 2R,StepsG) be the reachability graph and game before re-
finement, (Zref, Rref) be the result of applying algorithm Refine to (Z, R) and Gref =
(Zref, Z

ref
, 2R

ref
,Stepsref

G) be the game returned by BuildGame(Zref, Rref). Before we give
the proof we require the following lemmas.

Lemma C.1 If zref ∈ Zref, (zref, a, 〈zref
1 , . . . , zref

n 〉) ∈ R(zref) and z ∈ Z such that zref⊆z,
then there exists (z, a, 〈z1, . . . , zn〉) ∈ R such that zref

i ⊆zi for all 16i6n.

Proof C.2 Consider any zref ∈ Zref, (zref, a, 〈zref
1 , . . . , zref

n 〉) ∈ R(zref) and z ∈ Z such that
zref⊆z. We split the proof into two cases.

• If zref ∈ Z, then by construction zref=z, and therefore we have that either (zref, a, 〈zref
1 , . . . , zref

n 〉) ∈
R(z) in which case the lemma holds, or there exists (z, a, 〈z1, . . . , zn〉 ∈ R(z) from
which (zref, a, 〈zref

1 , . . . , zref
n 〉) was constructed. In the second case, it follows from

Refine (see Figure 5) that zref
i ∈ zi for all 16i6n as required.

• If zref 6∈ Z, then for zref⊆z it follows that zref was formed by splitting z. Hence, there
exists a symbolic transition (z, a, 〈z1, . . . , zn〉 ∈ R(z) which was used to construct
(zref, a, 〈zref

1 , . . . , zref
n 〉). It follows from this construction that zref

i ∈ zi for all 16i6n
as required.

Since these are the only cases to consider, the lemma holds. ut

Lemma C.3 For any strategy pair (σref
1 , σref

2) of Gref and zref ∈ Zref there exists a strategy

pair (σ1, σ2) of G where pσ1,σ2
z (ZF) = p

σref
1 ,σref

2

zref
(ZF) for all z ∈ Z such that zref⊆z.

Proof C.4 Consider any any strategy pair (σref
1 , σref

2) of Gref, zref ∈ Zref and z ∈ Z such
that zref⊆z. We construct the strategy pair (σ1, σ2) of G so that in state z they match the
choice made by the pair (σref

1 , σref
2) in zref. If in zref the choice of (σref

1 , σref
2) corresponds

to the symbolic transition (zref, a, 〈zref
1 , . . . , zref

n 〉), then, using Lemma C.1, there exists
(z, a, 〈z1, . . . , zn〉) of G such that zref

i ⊆zi for all 16i6n and we construct (σ1, σ2) such
that their choice corresponds to this symbolic transition. The remainder of the proof then
follows in an identical fashion to Lemma B.1. ut

Lemma C.5 For any z ∈ Z and player 2 strategy σ2 of G there exists a strategy pair
(σref

1 , σref
2) of Gref where

infσ1 p
σ1,σ2
z (ZF) 6 p

σref
1 ,σref

2

zref
(ZF) and p

σref
1 ,σref

2

zref
(ZF) 6 supσ1

pσ1,σ2
z (ZF)

for all zref such that zref⊆z.

19

Proof C.6 Given a player 2 strategy σref
2 of Gref the proof follows by constructing a player

1 strategy σref
1 of Gref and strategy pair (σ1, σ2) of G such that:

pσ1,σ2
z (ZF) = p

σref
1 ,σref

2

zref
(ZF)

for all zref such that zref⊆z. This follows similarly to Lemma B.3 using Lemma C.1 to
construct the choices of σref

1 and (σ1, σ2). ut

Proof C.7 (of Theorem 5.1) The fact that (Zref, Rref) is a reachability graph follows
from Refine since we only split symbolic states and remove symbolic transitions which are
not valid. The second part of the proof follows similarly to the proof of Theorem 4.3 using
Lemmas C.3 and C.5 instead of Lemmas B.1 and B.3. ut

D Proof of Theorem 5.2

Proof D.1 (of Theorem 5.2) The proof is based on the correctness of the region graph
construction for timed automata [1]. More precisely, the proof follows by combining the
following results:

• the refinement scheme always divides zones into zones which are proper subsets (see
Section 5);

• any zone is a union of regions;

• the refinement scheme cannot split regions;

• there are only finitely many (c-closed) regions;

• if (Z, R) is a reachability graph where all zones appearing in Z are regions, then for
any (l, ζ) ∈ Z we have valid(θ) = ζ for all θ ∈ R(l, ζ);

• if G = (Z, Z, 2R,StepsG) is the stochastic game returned by BuildGame(Z, R), then
StepsG(z,Θ) is a singleton set for all z ∈ Z and available actions Θ;

• if StepsG(z,Θ) is always a singleton set, then plb,?
G (ZF) = pub,?

G (ZF);

• from Theorem 5.1 we have plb,?
G (ZF) 6 p?P(SF) 6 pub,?

G (ZF). ut

20

