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Abstract. Probabilistic verification techniques have been proposed for
runtime analysis of adaptive software systems, with the verification re-
sults being used to steer the system so that it satisfies certain Quality-
of-Service requirements. Since systems evolve over time, and verification
results are required promptly, efficiency is an essential issue. To address
this, we present incremental verification techniques, which exploit the
results of previous analyses. We target systems modelled as Markov de-
cision processes, developing incremental methods for constructing mod-
els from high-level system descriptions and for numerical solution using
policy iteration based on strongly connected components. A prototype
implementation, based on the PRISM model checker, demonstrates per-
formance improvements on a range of case studies.

1 Introduction

Computerised systems are prevalent in our daily life and a growing number of
our everyday activities depend on their correctness. Many of these systems ex-
hibit probabilistic behaviour: physical devices may fail, communication media are
lossy and protocols use randomisation. Hence, traditional verification techniques
do not suffice to ensure their correct behaviour. Probabilistic model checking is
an automated method of verifying quantitative properties of these systems. An
example of such a property is: “the web service successfully delivers a response
within 5ms with probability at least 0.99”.

It has recently been proposed to use probabilistic model checking for run-
time verification of adaptive systems [2], where quantitative verification is used to
steer a system such that it satisfies formally specified Quality-of-Service (QoS)
requirements. The framework of [2] is illustrated in Figure 1. It comprises a
computer system exhibiting probabilistic behaviour, a monitoring module that
observes its behaviour and a reconfiguration component, which issues it instruc-
tions. Requirements to be fulfilled are verified against a high-level model of sys-
tem’s behaviour, which is parametrised using data from the monitoring module.
The results of verification are then forwarded to the reconfiguration module,



Fig. 1. Runtime verification of probabilistic systems using PRISM [2].

which directs the system accordingly. In this paper, we use the probabilistic
model checker PRISM [10] for analysing system models.

A real-world example of a computer system that could be monitored with
such techniques is a dynamically changing network in which joining devices es-
tablish local IP addresses using the ZeroConf protocol. This protocol is based
on the random selection of an IP address, followed by the transmission of sev-
eral probes: messages that enquire about the availability of the chosen address.
To improve the network QoS, we would want to minimise the probability of
choosing a conflicting IP address. Parameters that influence this probability in-
clude the number of hosts in the network and the number of probes sent before
claiming a given IP address. Such parameters could be monitored and used by a
probabilistic model checker to compute the probability of a conflict. The results
would then be forwarded to the reconfiguration module which can, for example,
increase the number of probes sent, if the probability of the conflict is too high.

In this paper, our aim is to optimise the performance of runtime verification
for probabilistic systems. Since the systems being verified change dynamically
and the results of verification are needed promptly to steer the system, efficiency
is essential. We consider incremental verification techniques, which exploit the
results of previous analyses following a small change to the system being verified.

We target systems modelled as Markov decision processes (MDPs), a widely
used model for systems exhibiting both probabilistic behaviour (e.g., using a ran-
domly generated IP address) and nondeterministic behaviour (e.g., due to con-
currency between network devices). We present incremental techniques for the
two main phases of probabilistic verification: model construction, which exhaus-
tively constructs an MDP from a high-level model description, and quantitative
verification, which applies numerical techniques to determine the correctness of a
system requirement, formally specified in temporal logic. For the former, we pro-
pose a technique that infers all states that have to be visited in the incremental
step. For the later, we use policy iteration, optimised using a decomposition of
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the system into strongly connected components, and performed incrementally by
re-using policies between verification runs. We have implemented our techniques
in a prototype extension of PRISM and illustrate the benefits of our approach
on a set of benchmark models.

1.1 Related Work

Various techniques have been developed that use model checking at runtime;
see [1] for a discussion and further references. There is also increasing inter-
est in incremental model checking techniques. Of particular relevance here are
those for probabilistic systems. Wongpiromsarn et al. [19] studied incremental
model construction for increasing numbers of system components. In contrast,
we focus on changes within a fixed set of components. Filieri et al. [7] presented
efficient incremental verification for the simpler model of discrete-time Markov
chains using parametric techniques, but their method is subject to an exponential
blow up when applied to MDPs and does not handle structural model changes.
Kwiatkowska et al. [14] proposed incremental methods for MDPs based on a
decomposition into strongly connected components. We consider model changes
at the modelling language description level, which [14] does not, and also permit
changes in model structure, rather than just transition probabilities. Other top-
ics related to the work presented in this paper include system reconfiguration
[4,16] and monitoring [5,20], which we do not consider.

2 Preliminaries

In this paper, we use N, R and Q for the sets of natural, real and rational
numbers, respectively. A probability distribution over a finite or countable set A
is a function d : A→ [0, 1] such that

∑
a∈A d(a) = 1. By Dist(A) we denote the

set of all probability distributions over A.

2.1 Markov Decision Processes

Markov decision processes (MDPs) are a commonly used formalism when there
is a need to capture both stochastic and nondeterministic behaviour. Formally,
an MDP is a tuple M=(S, s, αM, δM, L) where S is a finite set of states, s ∈ S
is an initial state, αM is a finite action alphabet, δM : S×αM → Dist(S) is a
(partial) probabilistic transition function and L : S → 2AP is a labelling function
mapping states to sets of atomic propositions from a set AP .

A transition from a state s ∈ S is performed by taking an action a ∈ αM, and
then choosing a successor s′ according to the probability distribution δM(s, a).
We use AM(s) to denote the set of all a such that δM(s, a) is defined. A finite

or infinite path is a sequence π = s0
a0−→s1

a1−→s2 · · · (or just s0a0s1a1s2 . . .) where
si ∈ S, ai ∈ AM(si) and δM(si, ai)(si+1) > 0 for all i. For a finite path ρ,
we use last(ρ) to denote its last state. The sets of all finite and infinite paths
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are denoted FPathM and IPathM, respectively, and the set of all such paths
beginning in a state s are denoted FPathM,s and IPathM,s, respectively.

A strongly connected component (SCC) in the MDP is a set C ⊆ S of states
that is strongly connected (there is a path between any two states in C) and
maximal (no superset of C is also strongly connected).

Adversaries. The choice of actions in an MDP is nondeterministic, and is
resolved using an adversary (also known as a policy or strategy), which is a
function σ : FPathM→Dist(αM) satisfying σ(ρ)(a)>0 only if a ∈ AM(last(ρ)).
The set of all adversaries of M is AdvM. A class of adversaries of particular
interest are memoryless deterministic adversaries, which choose the distribution
based on the last state of the path only, and always assign a Dirac distribution
(i.e. choose a single action with probability 1).

An MDP M, together with a state s and an adversary σ ∈ AdvM, in-
duce a probability space Prσs on IPathM,s, defined in a standard way [9]. For
a measurable set Π ⊆ IPathM,s, we can then study the minimum or maximum
probabilities of Π, over all adversaries:

Prmin
s (Π)

def
= inf

σ∈AdvM
Prσs (Π) and Prmax

s (Π)
def
= sup

σ∈AdvM

Prσs (Π).

2.2 The PRISM Modelling Language

In this paper, we use the probabilistic model checker PRISM, which supports
the analysis of several types of probabilistic models, including MDPs. Models to
be analysed in PRISM are specified in the PRISM modelling language, a textual
formalism based on guarded commands. We now briefly describe the syntax
and semantics of this language. We only concentrate on the part which is most
relevant for this paper; for a more detailed description, see [17].

A PRISM file consists of finite-domain variables x1, . . . xn and a set of k
modules (for simplicity, we assume that all variables are global and so every
module can access and change any variable). A module consists of a list of
guarded commands of the form:

[a] g → λ1 : u1 + · · ·+ λm : um

where a is an action, g is a guard, which is a boolean expression over the variables,
λi ∈ (0, 1] for 1 ≤ i ≤ m are positive real numbers summing up to 1, and ui
are variable updates. A variable update is a conjunction of operations of the
form x′i = f(x1, . . . xm) which change values of variables, for example (x1

p=x1 +
1)&(x2

p=x3 · x3) is a variable update that increments x1 by one and assigns the
square of the value of x3 to x2.

The modules in a PRISM file are combined through parallel composition.
For simplicity, we define this at the level of the syntax of a PRISM file. The
parallel composition M1|[A]|M2, of modules M1 and M2, synchronising over a
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set of actions A, consists of all commands of M1 and M2 which are not labelled
with an action from A and commands of the form:

[a] g&g′ →
n∑
i=1

m∑
j=1

λi · λj : ui&u
′
j

where [a] g → λ1 : u1 + · · · + λn : un and [a] g′ → λ′1 : u′1 + · · · + λ′m : u′m are
commands of M1 and M2, and a ∈ A.

A PRISM file determines a system module, which is the parallel composition
M1|[A1]|M2|[A2] · · · [Ak−1]|Mk of all modules M1, . . .Mk in the file, where Ai is
defined inductively as the intersection of the sets of actions of M1|[A1]| · · ·Mi and
Mi+1. The semantics of the PRISM file is then given by defining the MDP that
corresponds to the system module M . This is an MDP M = (S, s, αM, δM, L)
defined as follows. Let x1, . . . xn be all variables of M and V1, . . . Vn their possible
values. We put S = V1 × · · ·Vn, s = (v1, . . . vn), where vi is the initial value of
the variable xi, and let αM be equal to the set of all actions of all commands
in M . The transition function δM is defined in terms of M’s commands. Since
we work in this paper with MDPs, we will make the assumption that, for each
state (v1, . . . , vn) and action a, there is at most one a-labelled command of M
whose guard g is satisfied in (v1, . . . , vn), i.e., where g[v1/x1, . . . vn/xn] evaluates
to true. Then, δM((v1, . . . vn), a) is defined for a state (v1, . . . , vn) if and only if
such a command exists. When it does, let this (unique) command be:

c ≡ [a] g → λ1 : u1 + · · ·+ λm : um

We define δM((v1, . . . vn), a) to be equal to the distribution d which, for each
state (v′1, . . . v

′
n), assigns probability equal to the sum of values λi for 1 ≤ i ≤ m

such that applying update ui to variable values (v1, . . . vn) gives (v′1, . . . v
′
n).

Lastly, the labelling function L is also defined in the PRISM file as a set
of atomic propositions, each with a corresponding predicate over the variables
x1, . . . , xn, that defines the set of states that satisfy it.

2.3 Computing Reachability Probabilities

In this paper, we aim at computing the minimum and maximum probability of
reaching a given set of states. This problem forms the basis for verifying various
commonly used temporal logics, such as PCTL and LTL, against MDPs. For-
mally, for a set T ⊆ S, we define ♦T = {π ⊆ IPathM,s | π contains a state of T},
and compute the values Prmin

s (♦T ) and Prmax
s (♦T ).

Common methods for computing these probabilities are value iteration, which
is an approximate iterative numerical solution method, and policy iteration,
which analyses a sequence of adversaries with increasing/decreasing probabili-
ties. We briefly explain how these techniques are used for computing Prmax

s (♦T );
the case Prmin

s (♦T ) is similar.
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Value Iteration. The value iteration technique relies on the fact that Prmax
s (♦T ) =

limn→∞ xns where xns is equal to 1 if s ∈ T , to 0 if n = 0, and to:

max
a∈A

∑
s′∈S

δM(s, a)(s′) · xn−1s

otherwise. In order to get a sufficient approximation, the numbers xns can be
computed for suitably large n.

Policy Iteration. In policy iteration, we start with an arbitrary memoryless
deterministic adversary σ and compute the probabilities Prσs (♦T ). Then, we
determine whether σ is optimal by checking that:

Prσs (♦T ) ≥ max
a∈A

∑
s′∈S

δM(s, a)(s′) · Prσs′(♦T )

for all s ∈ S \ T . If σ is not optimal, then a new memoryless deterministic
adversary is chosen by picking arg maxa∈A

∑
s′∈S δM(s, a)(s′) ·Prσs′(♦T ) in each

s ∈ S, and policy iteration continues from the beginning with the new adversary.
If σ is found to be optimal, then the equality Prσs (♦T ) = Prmax

s (♦T ) holds.
Again, in practice, we often do not compute the values Prσs (♦T ) precisely,

but approximate them using a variant of value iteration for a fixed adversary.

3 Incremental Model Construction

The first phase of verifying a probabilistic system typically involves construction
of the probabilistic model to be analysed, i.e. an exhaustive exploration of its
state space, based on a high-level model description. In many cases, model con-
struction plays a significant role in the overall performance of a model checker,
so it is important to consider techniques for improving model construction time.

In this paper, we focus on models described in the PRISM modelling lan-
guage. The costly part of model construction is the evaluation of commands and
subsequent creation of new states in the MDP being built. We outline a novel
method for incremental model construction that is designed to operate after rel-
atively small runtime changes to the structure of the MDP. At the level of the
high-level model description, we assume that these changes are made by altering
parameters of the PRISM model. These are constants from the model description
whose value is not determined until runtime. We only consider changes in param-
eters that occur in guards of commands, which is a common scenario in practice.
For simplicity, we do not consider parameters that affect transition probabilities
values. Such changes could be handled using the techniques described in [14].

The proposed technique is implemented as an extension of the model con-
struction phase of PRISM’s explicit-state model checking engine. This builds an
MDP from a PRISM model, based a systematic exploration of its state-space
from the initial state using a variant of depth-first-search (DFS). Whenever a
new state is discovered, all commands are evaluated for the given state. If a
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guard of the command is satisfied, then all updates are performed to find the
state’s successors. The basic idea of our incremental method is to infer the sub-
set of states needing to be rebuilt, reducing the number of commands to be
re-evaluated.

We illustrate our approach using an example: a PRISM model [11] of the
previously mentioned Zeroconf protocol. The PRISM model description is pre-
sented in Figure 2. Parameters of the model are given as undefined constants.
The constant N represents the number of the devices in the network and the
constant K represents the number of probes. We describe the case for changes
to K only, but our algorithm supports an arbitrary number of parameters.

1 : mdp
2 :
3 : // CONSTANTS
4 : const int N; // number of abstract hosts
5 : const int K; // number of probes to send
6 : const double loss; // probability of message loss
7 :
8 : // PROBABILITIES
9 : const double old = N/65024; // probability pick an ip address being used
10 : const double new = (1− old); // probability pick a new ip address
11 :
12 : ...
13 :
14 : module environment
15 :
16 : ...
17 :
18 : endmodule
19 :
20 : module host0
21 :
22 : probes : [0..K ];
23 :
24 : ...
25 :
26 : // send probe
27 : [send] l=2 & x=2 & probes<K → (x ′=0) & (probes′=probes + 1);
28 : // sent K probes and waited 2 seconds
29 : [] l=2 & x=2 & probes=K → (l′=3) & (probes′=0) & (coll′=0) & (x ′=0);
30 :
31 : ...
32 :
33 : endmodule

Fig. 2. Fragments of a PRISM model of the Zeroconf protocol [11].

Let us consider the scenario where we have modelM1 = (S1, s1, αM1
, δM1

, L1)
obtained for K = k1 in memory and we want to build a new model M2 =
(S2, s2, αM2

, δM2
, L2) for K = k2. The pseudocode for our approach can be

found in Algorithm 1.
The algorithm starts with undefined constant K in the undefined constants

variable. By executing function get affected guards, we obtain all guards that
contain undefined constants. For the Zeroconf case study we obtain guards that
can be found in lines 27 and 29 and for convenience we will call them g1, g2 (in
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the example, these commands have probability 1, but this is not a limitation of
our approach).

In each of the guards, there exists a variable which is in a relation with the
undefined constant K. Guards g1 , g2 share variable probes with two correspond-
ing relations: probes < K and probes = K . We obtain such variables by calling
get depended variables() and store them in variable vars.

The most important observation at this point is that, in order to build the
model M2 for K = k2, we do not need to re-evaluate commands in all states: it
is sufficient to examine states from M1 that satisfied g1, g2 for K = k1 but no
longer satisfy for K = k2, and states that now satisfy g1, g2 for K = k2. To find
such states we need to compute bounds on the values of probes for K = k1 and
K = k2.

The task of finding bounds on a variable that is part of a guard is essentially
equivalent to non-linear arithmetic involving transcendental functions which is
in general undecidable [8]. Fortunately, for a large subset of practical problems,
including various PRISM case studies that we have analysed, this can be accom-
plished using an SMT solver over the theory of linear arithmetic. In fact, for
many common classes of expressions (such as this example) we can extract the
bounds directly.

In our example, to compute bounds forK = k1 we use function old min max ()
and obtain probes ∈ [0, k1) for g1 and probes ∈ [k1, k1] for g2. To obtain
bounds when K = k2 we call new min max () and obtain probes ∈ [0, k2) and
probes ∈ [k2, k2]. To find all states that satisfy guard g1 for K = k1 and K = k2
we do a state space search using the bound probes ∈ ([0, k1) ∩ [0, k2)) and store
the discovered states in variable all . In the variable same, we keep states that
satisfy the given guard for K = k1 and still satisfy for K = k2. Such states
can be found by using a bound that is a conjunction on respective intervals i.e.
probes ∈ ([0, k1)∩ [0, k2)) for g1. All the states that need to be re-evaluated can
be found in the set all \ same which is stored in variable reexplore. The same
process is subsequently repeated for guard g2.

In the last step, we forward all states from reexplore to the non-incremental
model construction algorithm. During the re-evalution, we may remove some
transitions and make some parts of the state of M2 unreachable. As M2 must
not contain any unreachable states we could use algorithms that provide dynamic
reachability [18]. As our model checking algorithms will perform a decomposition
of M2 into strongly connected components (SCCs), we use them to detect any
unreachable states.

The most costly part of the algorithm is the find states() function since,
in the worst case, it has to traverse the whole state space to find states that
satisfy a given bound. In practice, case studies often have only a small number
of dependent variables and, by keeping state space ordered by a given variable
and using binary search, we can significantly speed up the search process.

To conclude this section, we provide a formal proof of the correctness of
Algorithm 1.
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Algorithm 1 Incremental model construction

1: guards ← get affected guards(undefined constants)
2: reexplore ← ∅
3: for each g in guards do
4: vars ← get depended variables(g , undefined constants)
5: for each v in vars do
6: old = find states(v , old min max (g , v))
7: new = find states(v ,new min max (g , v))
8: same ← old ∩ new
9: all ← old ∪ new

10: reexplore ← reexplore ∪ (all \ same)
11: end for
12: end for
13: model ← model construction(model , reexplore)
14: model ← reachability(model)

Theorem 1. The incremental model construction algorithm constructs the same
state space as the non incremental algorithm.

Proof. The key idea behind the proof is to firstly prove that variable reexplore
contains all the states from S1 that may gain or lose a transition in S2, i.e. for
every s ∈ S1, whenever δM1(s) 6= δM2(s), then s ∈ reexplore. Subsequently, we
have to prove that all new states in S2, i.e. s ∈ (S2 \S1), are reachable on a path
going through one of the states in reexplore or on a path that starts in a new
initial state and consists only of states that belong to S2 \ S1. Lastly, we need
to prove that S2 does not contain any unreachable states.

Lemma 1. For every s ∈ S1, whenever δM1
(s) 6= δM2

(s), then s ∈ reexplore.

Proof. We give a proof by contradiction for the case when we add a transition;
removing a transition can be handled in a similar way. Let us assume there exists
a state s ∈ S1 satisfying δM1

(s) 6= δM2
(s) but not contained in reexplore. When

a new transition is added in a state s ∈ S1 ∩ S2 there must exist a guard g′ in
M2 satisfying state s and a syntactically equivalent guard g in M1 that is not
satisfied in state s. Each guard consists of boolean expressions and there exists
expression e ∈ g such that e was not satisfied by s but its syntactically equivalent
expression e′ ∈ g′ is satisfied by s. Bound b on each variable contained in e is
returned by old min max() and bound b′ on the same variable contained in e′

is returned by new min max(). As s does not satisfy b but satisfies b′ from the
definition of lines 8, 9, 10, s is going to be included in reexplore which contradicts
our initial assumption.

Lemma 2. All new states in S2, i.e. s ∈ (S2\S1), are reachable on a path going
through one of the states in reexplore, or on a path that starts in a new initial
state and consist only of states that belong to S2 \ S1.

Proof. Paths that start in a new initial state (sM2
6= sM1

) and consists, only
of states in S2 \ S1, are handled by the non-incremental algorithm, so the proof
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follows directly. For new states reachable on paths going through reexplore we
will prove existence of such paths by contradiction. Let us assume that a new
state s ∈ (S2 \ S1) is reachable on a path that does not include any state from
reexplore. As this path cannot contain states in S2 \ S1 only (as this case is
covered by the first part of the proof), we move backwards on this path and find
state s ∈ S1 and its successor on a path s′ ∈ (S2 \ S1). For such state s there
exists an action a ∈ AM2

(s) such that δM2
(s, a)(s′) > 0. As s′ /∈ S1 we have

that δM1(s, a)(s′) = 0, and from Lemma 1 we know that state s has to belong
to reexplore which contradicts our assumption.

Lemma 3. S2 does not contain any unreachable states.

Proof. Follows trivially from the definition of reachability function.

4 Incremental Quantitative Verification

Next, we consider incremental techniques for verifying MDPs. As discussed ear-
lier, the key part of verifying quantitative properties reduces to a numerical
computation phase which determines the minimum or maximum probability of
reaching a set of target states, using techniques such as value iteration and policy
iteration.

4.1 SCC-based Policy Iteration

Previous incremental verification techniques for MDPs [14] were based on the use
of value iteration, applied to a decomposition of the the model into its strongly
connected components (SCCs) [3]. These methods are not directly applicable to
the scenarios we consider in this paper since, unlike [14], we permit structural
changes to be made to the MDP. Instead, we propose an SCC-based version of
policy iteration.

As in SCC-based value iteration, we first decompose the state space of the
MDP into SCCs. Given an MDP (S, s, αM, δM, L), we partition S into the set
of SCCs C1, C2, . . . , Cm such that Ci ⊆ S for all 1 ≤ i ≤ m, Ci 6= Cj for all
1 ≤ i 6= j ≤ m and

⋃
i Ci = S. Then, we use policy iteration, instead of value

iteration, to compute the probabilities for each SCC. Our experimental results
show that SCC-based policy iteration outperforms SCC-based value iteration on
certain case studies. As discussed in [14], independent SCCs can be processed
in parallel to utilise advantage of multi-cores architecture in modern CPUs. In
addition, the Tarjan order proposed in [15] has also been found useful for SCC-
based policy iteration. For an SCC, the Tarjan order among states is the one in
which states are visited by the Tarjan’s algorithm during SCC decomposition.
Compared to the order generated by model construction, using this order during
policy iteration reduces the running time.
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4.2 Incremental Policy Iteration

Although policy iteration can use arbitrary memoryless deterministic adversary
as a starting point, a good starting adversary can reduce the number of iterations
performed before policy iteration terminates. An extreme example is that the
starting adversary is already optimal with respect to the reachability probability.
In this case, only one iteration is needed. However, it is hard to predict an
optimal adversary. A common practice is to choose the first action a ∈ AM(s)
if AM(s) is ordered, or randomly choose an action in AM(s), for each state s,
when constructing the starting adversary.

For incremental policy iteration, we can use the results from the previous
round of verification to guide the selection of the starting adversary. Let M1 =
(S1, s1, αM1 , δM1 , L1) be an MDP and σ1 an optimal adversary computed by
policy iteration on M1. Let M2 = (S2, s2, αM1

, δM2
, L2) be the MDP that is

constructed incrementally fromM1 according to a new set of parameter values.
Let S′ ⊆ S1 ∩ S2 be the set of states such that for all s ∈ S′:

1. AM1
(s) = AM2

(s),
2. for each a ∈ AM2

(s),
(a) δM1

(s, a)(s′) = δM2
(s, a)(s′) for each s′ ∈ S′,

(b) δM1
(s, a)(s′) = 0 for each s′ ∈ S1\S′,

(c) δM2
(s, a)(s′) = 0 for each s′ ∈ S2\S′.

Intuitively, S′ is the set of states that have same outgoing transitions in both
M1 andM2. In incremental policy iteration, we set σ2(s) = σ1(s) for each state
s ∈ S′, where σ2 is the starting adversary when we apply policy iteration toM2.
The reason for doing this is that the two models could have similar behaviour
in those states that are affected by the change of parameter values. For states
outside S′, we use the same strategy as that in normal policy iteration.

5 Experiments

We implemented our techniques in an extension of PRISM, using its explicit-
state model checking engine. We evaluate our techniques on four case studies:

– zeroconf : a model of Zeroconf dynamic configuration protocol [11] for a de-
vice obtaining an IPv4 address from a network with N existing devices by
sending K probes. The property being checked is “the maximum probability
of the host not getting a fresh IP address in the end”.

– mer : a model of the flight software for JPL’s Mars Exploration Rover [6],
where N threads compete for a set of resources. The property being checked
is “the maximum probability that mutual exclusion is not violated within 2
cycles of system execution”.

– consensus: a model of the shared coin protocol with K rounds of coin flips
used in the randomised consensus algorithm [12] for N processes. The prop-
erty being checked is “the maximum probability that the protocol terminates
without reaching consensus”.
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– firewire: a model of the tree identify protocol of the IEEE 1394 (FireWire)
procotol [13]. The property being checked is “the maximum probability of
choosing a leader within the deadline”.

Experiments were conducted on a PC with an 2.8GHz Xeon processor and
32GB of RAM, running Fedora 14, taking the form of running a series of verifica-
tions where a model parameter was increased each time. Tables 1 and 2 show the
parameter ranges, the sizes of the resulting models, and the total time required
to perform model construction and verification for all models, in both incremen-
tal and non-incremental fashion. The overhead on memory usage is negligible
for both algorithms, and thus omitted.

The incremental model construction algorithm performs better than the stan-
dard PRISM model construction algorithm on each case study. The factor that
has the greatest influence on the performance, is the number of states that needs
to be added between each experiment. The largest number of states is added for
zeroconf and for this case study improvements are only 2-fold. The smallest
number of states added between experiments happens for firewire case study,
but because of larger number of experiments we observe better results for the
mer case study where improvements are almost 10-fold.

Table 2 contains results for improved model checking algorithms. For for-
matting reasons we used VI and PI for value iteration and policy iteration.
SCC-based policy iteration performs better for each case study than the original
algorithms. When compared to SCC-based value iteration, we see improvements
only for the consensus case study. Incremental policy iteration performs bet-
ter than SCC-based policy iteration in almost every case. The best results are
obtained for the zeroconf case study where we can observe almost 2-fold speed-
up. A small slowdown can be observed for one case in zeroconf and firewire.
Comparing to SCC-based value iteration, incremental policy iteration in most
cases performs similarly, with slowdown for zeroconf and 2-fold speed-up for
consensus.

Model Time(s)

Name Parameters States [103 ]
Original

model construction
Incremental

Model Construction

zeroconf
[N,K]

10,1-5 32-496 15.9 12.3
10,10-20 3002-5812 859.7 320.2
60000,1-5 32-496 16.2 11.6

60000,10-20 3002-5812 853.9 313.7

mer
[N ]

1-100 8-592 429.5 44.3
200-300 1183-1774 2352.4 192.5
400-500 2364-2955 4375.7 358.3

consensus
[N,K]

2,1-40 1-56 0.8 0.4
2,80-120 10-15 2.3 0.9
4,1-20 12-20 15.5 4.8

firewire
[deadline]

1000-1050 369-398 62.3 10.3
2000-2050 970-1000 160.5 25.7
3000-3050 1571-1601 265.7 42.4

Table 1. Performance comparison for incremental model construction.
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Model Time(s)

Name Parameters States
Original

VI
Original

PI
SCC Based

VI
SCC Based

PI
Incremental

PI

zeroconf
[N,K]

10,1-5 32-496 56.6 58.1 8.6 10.6 8.5
10,10-20 3002-5812 5020.2 5516.6 273.9 1859.1 1329.2
60000,1-5 32-496 133.7 332.1 13.2 49.7 50.9

60000,10-20 3002-5812 10242 16844.1 801.6 9333.9 4218.4

mer
[N ]

1-100 8-592 82.8 85.4 65.7 70.5 65.5
200-300 1183-1774 464.2 480.9 371.1 400.6 369.7
400-500 2364-2955 841.7 885.1 646.5 695.9 683.3

consensus
[N,K]

2,1-40 1-56 249.6 160.6 50.1 33.6 23.2
2,80-120 10-15 12148.5 6881.3 2286 1235.8 900.1
4,1-20 12-20 7188.6 4557.4 1058.3 1029.1 666.5

firewire
[deadline]

1000-1050 369-398 282.9 277.5 39.3 38.5 37.7
2000-2050 970-1000 711.7 710.5 97.8 99.7 97
3000-3050 1571-1601 1175.4 1160.8 176.4 174 181.6

Table 2. Performance comparison for incremental model checking.

6 Conclusions

We have described ongoing work to develop incremental verification techniques
for Markov decision processes, aimed at improving the efficiency of runtime meth-
ods for systems with probabilistic behaviour. Future directions include evaluat-
ing presented techniques on a deployed adaptive system and improving system
reconfiguration using policies obtained from model checking.
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