CADS*: Computer-Aided Development
of Self-* Systems

Radu Calinescu and Marta Kwiatkowska

Computing Laboratory, University of Oxford, UK
{Radu .Calinescu, Marta. Kwiatkowska}@comlab .0x.ac.uk

Abstract. We present the prototype tool CADS* for the computer-
aided development of an important class of self-* systems, namely sys-
tems whose components can be modelled as Markov chains. Given a
Markov chain representation of the IT components to be included into a
self-* system, CADS* automates or aids (a) the development of the arti-
facts necessary to build the self-* system; and (b) their integration into a
fully-operational self-* solution. This is achieved through a combination
of formal software development techniques including model transforma-
tion, model-driven code generation and dynamic software reconfiguration.

1 Introduction

The ever growing complexity of today’s IT systems has led to unsustainable
increases in their management and operation costs. Software architects and de-
velopers aim to alleviate this problem by building self-* (or autonomic) systems,
i.e., systems that self-configure, self-optimise, self-protect and self-heal based on
a set of high-level, user-specified objectives [4, 8].

The architecture of a self-* system is depicted in Fig. 1. Given a set of user-
specified system objectives (or policies), an autonomic manager monitors the
system components through sensors, uses its knowledge (i.e., model of the sys-
tem) to analyse their state and to plan changes in their configurable parameters,
and implements these changes through effectors. In recent work, we introduced
a general-purpose implementation of an autonomic manager as a reconfigurable
policy engine [1], and we described how quantitative analysis methods from the
area of probabilistic model checking can be used to implement user-specified
policies in a self-* system [2, 3].

@onitor)
- MONitor)g \M‘ - l

_} ¢\ knowledge ¢~
= /(system model) ~ IT component
system > d
-

objectives — execute

(policies)

Autonomic manager Manageability Existing system
adaptors

Fig. 1. High-level architecture of a self-* system

Markov || 7% (XML) system 4} | configured %
chain G1: model|model D1: palizy| Policy engine EA: policy
transformation engine specification
62: X5l '&_} configuration
transfarmation] ™
System (XIML)
schema
63: 350 code [)
oy
generation
Self- * system
Key System data
types (classes)
y, automated
= step Gd: genec senice | 4
2
cormputer- subclassing “’A‘%
- - b
"&,J;‘ Easmsted Manageability| i Manageable “r
step adaptor D2: adaptor| €omponents ||[E2: component discovery
manual deployrnent
_ " step Generation Deployment Exploitation

Fig. 2. The CADS* development process

In this paper, we introduce CADS*| a tool for the computer-aided develop-
ment of self-* systems whose components can be modelled as Markov chains.
The tool takes as input a continuous- or discrete-time Markov chain (CTMC or
DTMC) describing the behaviour of the IT components to be included in the
self-* system. This Markov chain is expressed in the high-level modelling lan-
guage used by the probabilistic model checker PRISM [5], and may be available
already from the verification of the IT components.! Alternatively, the Markov
chain can be built as described in [6, 5].

Starting from the Markov chain mentioned above, CADS* reduces the effort
and expertise required to develop self-* systems by automating or guiding: (a) the
generation of the system model used to set up the reconfigurable policy engine
from [1]; (b) the generation of the manageability adaptors from Fig. 1; and (c¢) the
configuration of the policy engine for the planned self-* solution.

2 CADS* Development Process

The three-stage development process implemented by CADS* is shown in Fig. 2,
and presented below.

Generation stage This stage starts with the developer uploading into CADS*
a Markov chain describing the behaviour of the targeted IT components, and
expressed in the PRISM modelling language [5]. In a first step (labelled G1
in Fig. 2), CADS* employs a model transformation to derive an XML-encoded
model of the system to be managed, as described by the mapping

modelTrans formation : MarkovChain — SystemM odel, (1)

! PRISM models for a wide range of system components are available from [9].

where MarkovChain and SystemM odel represent the set of Markov chains ac-
cepted by PRISM and the set of models used to configure the policy engine
from [1]. Step G1 is computer-assisted, i.e., the developer is required to allocate
the system parameters that CADS* identifies in the Markov chain to IT com-
ponents, and to partition them into read-only state parameters and read-write
configuration parameters.

In step G2, CADS* uses an XSL transformation to automatically extract an
XML schema specification for the targeted IT components from the result of (1):

schemaGen : SystemModel — XmlSchema. (2)

In step G3, the tool runs an instance of the XML Schema Definition tool [7] to
generate the set of data types associated with the XML schema:

dataTypeGen : XmlSchema — 2P Tvre, (3)

The result is a set of NET classes. Finally, we implemented a model-driven code
generation module that CADS* uses in step G4 to automate the generation of
web service stubs for the manageability adaptors in Fig. 1:

adaptorGen : XmlSchema — 2ManageabilityAdaptor, (4)

These stubs subclass a generic abstract web service ManagedResource<T> that
implements the bulk of the sensor and effector functionality associated with
the manageability adaptor for an IT component (or resource). At the end of this
computer-assisted step, CADS* requires that the developer implements manually
a couple of simple, component-specific methods that are declared abstract in
ManagedResource< T>—the work involved is described in [1].

Deployment stage In step D1, the developer provides the URL of a running
instance of the policy engine from [1], and CADS* calls the appropriate web
method to supply the model from (1) to this policy engine. In step D2, the
manageability adaptors from step G4 are deployed manually, and configured to
access the IT components to which autonomic capabilities are being added.

Exploitation stage In step E1, user-specified policies are forwarded by CADS* to
the policy engine configured in step D1. These policies are specified in the pol-
icy expression language described in [2, 1], by using a combination of arithmetic,
logic, relational and string operators, and optimisation functions such as MIN,
Max and GOAL to construct well-defined policies as expressions of the system
parameters identified in step G1. Finally, the policy engine applies these poli-
cies to the IT components exposed by the manageability adaptors it discovers
automatically in step E2.

3 Tool Validation

In order to assess the effectiveness of CADS*, we used it to re-implement two
self-* systems that we had previously developed manually in [2, 3]. The first sys-
tem was a self-configuring/self-protecting system whose objective was to main-
tain user-specified levels of availability for a set of data-centre clusters. This

objective was achieved by automatically adapting the number of servers allo-
cated to each cluster to changing cluster workloads, priorities and target avail-
abilities. The second system was a self-optimising system involving the dynamic
power management of a disk drive, and had as objective the optimisation of
user-specified trade-offs between the performance and the power usage of a disk
drive exposed to variable workloads.

In both cases, we started from existing PRISM CTMCs from [9], and we
successfully devised operational prototypes of the planned self-* system in ap-
proximately a tenth of the time taken to develop an equivalent solution manually
(i.e., under one day compared to over a week). This gain was primarily due to
CADS* reducing significantly the potential for developer error through automat-
ing or aiding the development of the self-* system artifacts, and their integration
into a fully operational solution.

4 Conclusion

We introduced the prototype computer-aided development tool CADS* and
briefly described how its use in two case studies sped up the development of self-*
systems compared to implementing equivalent systems manually. Future work
includes augmenting CADS* with the ability to aid users in the specification
of valid, non-conflicting system objectives, and to validate the tool further by
exposing it to developers with limited expertise in self-* system development.

Acknowledgement This work was partly supported by the UK Engineering and
Physical Sciences Research Council grant EP/F001096/1.

References

1. R. Calinescu. Implementation of a generic autonomic framework. In Proc. 4th Intl.
Conf. Autonomic and Autonomous Systems, pages 124-129, 2008.

2. R. Calinescu. General-purpose autonomic computing. In M. Denko et al., editors,
Autonomic Computing and Networking. Springer, April 2009.

3. R. Calinescu and M. Kwiatkowska. Software engineering techniques for the devel-
opment of systems of systems. In Proc. 15th Monterey Workshop on Foundations
of Computer Software, pages 8693, 2008.

4. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Com-
puter Journal, 36(1):41-50, January 2003.

5. M. Kwiatkowska et al. Quantitative analysis with the probabilistic model checker
PRISM. Electronic Notes in Theoretical Computer Science, 153(2):5-31, 2005.

6. M. Kwiatkowska et al. Stochastic model checking. In M. Bernardo and J. Hillston,
editors, Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation, pages 220-270. Springer, 2007.

7. Microsoft Corporation. Xml schema definition tool (xsd.exe), 2007.
http://msdn2.microsoft.com/en-us/library /x6¢1kb0s(VS.80).aspx.

8. M. Parashar and S. Hariri. Autonomic Computing: Concepts, Infrastructure & Ap-
plications. CRC Press, 2006.

9. PRISM Case Studies. http://www.prismmodelchecker.org/casestudies.

