
Towards Software Verification

for TinyOS Applications

Doina Bucur and Marta Kwiatkowska

Computing Laboratory, Oxford University, UK

{doina.bucur, marta.kwiatkowska}@comlab.ox.ac.uk

Introduction For the mainstream sensor operating system TinyOS, a pro-
grammer writes concurrent, shared-memory software in either nesC or the recent
C TosThreads API [3]. Elusive concurrency errors arise because of the nonde-
terministic thread interleavings, while context-awareness errors are due to the
application’s inability to deal with unexpected context. We contribute the very
first software verification tool for multithreaded, adaptive TinyOS 2.x applica-
tions written in TinyOS’s C TosThreads API. We statically verify a TinyOS
application against a safety specification w.r.t actuation and memory configu-
ration, given a—possibly nondeterministic—pattern of incoming context data.

Our tool [1] builds on SATABS [2], a generic software verification tool for
ANSI C; SATABS takes specifications written as user-specified assertions of
boolean conditions inserted in the code. It supports complex program features
such as dynamic thread creation, infinite loops and ANSI-C pointer use. We
(i) add native support for the C TosThreads API to SATABS, (ii) implement a
SATABS-readable C model of the TinyOS system calls to stand in for the OS
kernel, and finally (iii) verify application and kernel model against context-aware
safety specifications written as SATABS assertions. We report benchmarks on
running our tool on standard applications distributed with TinyOS’s sources,
and on a more complex healthcare application; we find routine violations of
safety requirements in staple TinyOS code.

The Tool A TinyOS application programmed in the TosThreads C API [3] is
tightly connected to the rest of the operating system’s kernel by calling kernel
services; these either manage execution scheduling (e.g. thread creation and
suspending) or access hardware (e.g. the radio port, sensor chips or resident
leds) on their respective software interfaces. We replace these services with
a kernel model, ensuring that their interface behaviour is preserved; e.g., if
amRadioSend([..]) can fail returning EBUSY, so must its model.

We give the results of our verification runs in Table 1; the Lines of Code
(LOC) count includes the necessary segments of kernel model. SenseAndSend
is the staple monitoring application in the TinyOS source tree. Four working
threads monitor the four Tmote Sky on-board sensor chips, and each writes
a fresh value in the data field of a network message; a fifth thread sends the
message on the radio. Claim 79 uncovers a misuse of the radio interface; thread
0 fails to ensure that the radio is turned on by not checking amRadioStart’s
returned error code, before a call to amRadioSend:



Table 1: Verification benchmarks. Times are given for runs on a Mac OS X
with a 2.4GHz Duo Intel Core and 2GB RAM.

Application
(Threads/LOC)

Claim
line

Veri-
fied?

Time Error: context
awareness

Error:
concurrency

Blink 4/64 66 yes 2.9s - -

SenseAndSend

6/347

79 no 32.2s interface use order violation

136 no 1m08s sensing failure -

146 yes 4m25s - -

PatientNode

6/439

230 no 35m07s network failure deadlock

268 yes 2m38s (false reasoning) -

262 yes 61m12s - -

amRadioStart(); // thread 0, main

if(amRadioSend(AM_BROADCAST_ADDR, &send_msg, ..) // thread 5, sending

The overall specification (claim 146) states that such messages should be sent
periodically, containing valid readings, and accompanied by led signalling.

PatientNode is a SenseAndSend extension for monitoring patients in a health-
care network. A number of biosensors monitor each patient; a PatientNode
application resident on one such sensor collects readings from the patient’s sen-
sors, sends them in a network message, and signals an abnormal condition by a
lit-led configuration. Claim 230 uncovers that a misplaced closing brace brings
the program into a deadlock on a barrier, if a message expected to be received
doesn’t show up:

if(amRadioReceive(&recv_msg, [..]) == SUCCESS) { // thread 3, receiving

barrier_block(&send_barrier);

}

barrier_block(&send_barrier); // thread 5, sending

barrier_reset(&send_barrier, [..]);

amRadioSend(AM_BROADCAST_ADDR, &send_msg, [..]);

Claim 268 verifies application logic: an abnormal received reading must be
treated as a false alarm if it is not confirmed by a subsequent such reading.

Acknowledgments The authors are supported by the project UbiVal: Fun-
damental Approaches to Validation of Ubiquitous Computing Applications and
Infrastructures, EPSRC grant EP/D076625/2.

References

[1] Doina Bucur and Marta Kwiatkowska. Bug-Free Sensors: The Automatic
Verification of Context-Aware TinyOS Applications. In Proceedings of the
Third European Conference on Ambient Intelligence (AmI). Springer, 2009.

[2] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
SATABS: SAT-based Predicate Abstraction for ANSI-C. In TACAS, 2005.

[3] Kevin Klues, Chieh-Jan Liang, Jeongyeup Paek, Răzvan Musăloiu, Ramesh
Govindan, Andreas Terzis, and Philip Levis. TOSThreads: Safe and Non-
Invasive Preemption in TinyOS. In ACM SenSys, 2009.


