
LIPIcs Leibniz International Proceedings in Informatics

Verification and Refutation of
Probabilistic Specifications via Games∗

Mark Kattenbelt1, Michael Huth2

1 Oxford University Computing Laboratory
Wolfson Building, Parks Rd, Oxford, UK

2 Department of Computing, Imperial College London
Huxley Building, 180 Queen’s Gate, London, UK

ABSTRACT. We develop an abstraction-based framework to check probabilistic specifications of
Markov Decision Processes (MDPs) using the stochastic two-player game abstractions (i.e. “games”)
developed by Kwiatkowska et al. as a foundation. We define an abstraction preorder for these game
abstractions which enables us to identify many new game abstractions for each MDP — ranging from
compact and imprecise to complex and precise. This added ability to trade precision for efficiency
is crucial for scalable software model checking, as precise abstractions are expensive to construct
in practice. Furthermore, we develop a four-valued probabilistic computation tree logic (PCTL)
semantics for game abstractions. Together, the preorder and PCTL semantics comprise a powerful
verification and refutation framework for arbitrary PCTL properties of MDPs.

1 Introduction
Model checking [5, 28] is a methodology for reasoning about the formal correctness of sys-
tems. The task of a model checker is to decide whether a model M satisfies a property φ. We
write this as a judgment M |= φ and say a model checker verifies or refutes such judgments.

It is often intractable to verify or refute judgments involving large or infinite-state mod-
els directly. A recognised solution is to apply abstraction. That is, we can reason about the
validity of M |= φ by model checking judgments involving abstractions A of M. Usually
abstraction is used within an abstraction-refinement loop [7]. Starting with a very imprecise
abstraction A this loop, if necessary, incrementally refines A until it is precise enough to
either verify or refute M |= φ. When model checking software one would typically use ex-
istential abstractions [8, 1], with which it is possible to verify a certain class of properties.
However, to refute these properties, one has to concretise abstract counter-examples [7].

In this paper we focus on probabilistic models and properties. Unfortunately, counter-
examples of probabilistic models are usually complex infinite structures [14]. Hence, refuta-
tion by concretising abstract counter-examples akin to existential abstractions is a lot more
involved for probabilistic models [16]. This motivates us to consider abstraction schemes
with which we can directly refute properties (c.f. modal or mixed abstractions [26, 10]). Such
abstractions also potentially demonstrate the validity or falsity of M |= φ more compactly
and more intuitively than probabilistic witnesses or counter-examples. That is, one may use
abstractions as diagnostic tools or certificates demonstrating validity or falsity of M |= φ [27].

∗This work was, in part, supported by UK EPSRC grants EP/D07956X/2 and EP/E028985/1.
c© Mark Kattenbelt and Michael Huth; licensed under Creative Commons License-NC-ND

2 VERIFICATION AND REFUTATION OF PROBABILISTIC SPECIFICATIONS VIA GAMES

The models we consider are Markov decision processes (MDPs), which naturally model
a wide range of probabilistic systems due to their ability to capture both probabilistic and
non-deterministic choice. Our abstraction scheme is based on the two-player stochastic game
(i.e. “game”) abstractions suggested in [24]. In [24], these abstractions are used to over and
under-approximate reachability probabilities of MDPs — as opposed to the verification and
refutation of more complex properties.

Unfortunately, the definition of abstraction in [24] has a shortcoming. Given a particu-
lar partition of MDP states it only considers the optimal game over this partition. That is,
other than the expected loss of precision that occurs due to joining MDP states, there is no
mechanism that enables one to lose more precision — in fact, it is unclear what less pre-
cise abstractions over this partition would look like. Optimal abstractions over a partition
are usually inefficient to represent and computationally expensive to construct. Moreover,
the same job can often be accomplished with less precise abstractions. This is evident in
most abstraction-based software model checkers which, for a fixed partition,† first consider
a coarse abstraction over this partition and consider more precise abstractions over this par-
tition only if this is necessary [1, 6]. Due to the shortcoming of [24] it is not possible to take
such an approach with game abstractions and, as constructing optimal game abstractions is
expensive, this significantly affects the scalability of, e.g., the method in [22].

Hence, the first issue we address in this paper is the development of an abstraction pre-
order for games which alleviates the shortcomings of [24]. Compared to the work in [24],
this preorder identifies many additional game abstractions of varying precisions — even
when restricted to a fixed partition. This opens up the possibility of adapting the method in
[22] and other tools using game abstractions [25, 21, 20] to reason more efficiently via non-
optimal games. Furthermore, instead of over and under-approximating reachability proper-
ties of MDPs, we develop a four-valued probabilistic computation tree logic (PCTL) [15] semantics
for games and show our abstraction preorder preserves this semantics. Our abstraction pre-
order and PCTL semantics together comprise a powerful abstraction framework with which
we can verify and refute arbitrary PCTL specifications of MDPs.

2 Background
Let AP be a fixed set of atomic propositions. Let B be the Boolean domain. Let PX be the
powerset of a set X, excluding ∅. A probability distribution over X is a function λ : X →
[0, 1] such that ∑x∈X λ(x) = 1 and the set {x ∈ X | λ(x) > 0} is countable. Let DX be the
set of all distributions over X. For x ∈ X let [x] ∈ DX be the point distribution on x, i.e.
x = 1. Every distribution over a countable set can be written as a countable sum of
point distributions ∑i wi · [xi].

We model four-valued logic [2] with a must (!) and may (?) modality of truth. Intuitively,
?-true corresponds to possible truth and !-true indicates certain truth. We represent true (resp.
false) by being both !-true and ?-true (resp. !-false and ?-false). We represent uncertainty by
being !-false and ?-true and inconsistency by being !-true and ?-false.

Given an arbitrary non-empty sequence π = ω0; ω1; ω2, . . . let |π| be the number ele-
ments of π minus one. We let π(i) be ωi and, if |π| is finite, let LAST(π) be π(|π|). Finally,

†That is to say, a fixed set of predicates when using predicate abstraction [1].

MARK KATTENBELT AND MICHAEL HUTH FSTTCS 2009 3

let πi be the prefix of π such that |πi| = i. We write π; π′ for the concatenation of sequences.
Markov decision processes We now introduce Markov decision processes (MDPs) which
naturally model systems with both non-deterministic and probabilistic behaviours:

DEFINITION 1. A Markov decision process (MDP) M is a tuple 〈S, si, T, L〉, where:
– S is a countable set of states;
– si ∈ S is an initial state;
– T ∈ S → PDS is a transition function;
– L ∈ S× AP → B is a labelling function.

The definition of P ensures totality: i.e. ∀s ∈ S : |T(s)| > 0 (this totality requirement is not
essential and is made for presentational reasons, only). We let M be the class of all MDPs.

From a state s ∈ S, a non-deterministic choice picks a distribution λ ∈ T(s). Then, the
next state s′ ∈ S is picked probabilistically according to λ. A path of M is a sequence over
S ∪DS that strictly alternates between states and distributions as described. Let ΠM and
Π∞

M be the set of all finite and infinite paths, respectively. For Ω ⊆ S ∪DS we write, e.g.,
ΠM(Ω) to restrict to paths starting with an element in Ω.

A strategy of M is a partial function σ : ΠM → DDS, with domain of definition all π

with LAST(π) ∈ S, such that σ(π) ∈ D(T(LAST(π))). As is evident from the definition, we
consider randomised strategies (i.e. strategies that resolve non-determinism with a proba-
bilistic choice). Let ΣM be all strategies of M. A path π is consistent with σ ∈ ΣM iff for all
i ≤ |π| − 1 with π(i) ∈ S the probability σ(πi)(π(i + 1)) is positive. We write, e.g., ΠM,σ to
restrict to paths consistent with σ. For every s ∈ S and σ ∈ ΣM we construct a probability
measure Prs

M,σ over infinite paths Π∞
M,σ({s}) with standard techniques [23].

Probabilistic CTL We define an adequate PCTL fragment with unrestricted negation [15]:

DEFINITION 2. A PCTL formula is defined with the following BNF-style syntax rules where
a ∈ AP, k ∈ N∪ {∞}, p ∈ [0, 1] and ./ ∈ {≤, <,≥, >}:

φ ::= a | ¬φ | φ1 ∨ φ2 | P ./ p〈ψ〉 ψ ::= Xφ | φ1U
≤kφ2 .

We let Φ and Ψ be the set of all PCTL formulae of the form φ and ψ respectively.

PCTL semantics of MDPs Finally, we define standard PCTL semantics of MDPs via a
satisfaction relation |= ⊆M×Φ [3]:

DEFINITION 3. Let M = 〈S, si, T, L〉 be an MDP, and let φ ∈ Φ be a PCTL formula. We
define satisfaction relations for states |= ⊆ S×Φ and paths |= ⊆ Π∞

M(S)×Ψ as follows:

π |= Xφ ⇐⇒ s1 |= φ

π |= φ1U
≤kφ2 ⇐⇒ ∃i≤k :

(
si |= φ2 ∧ (∀j<i : sj |= φ1

)
s |= a ⇐⇒ L(s, a)
s |= ¬φ ⇐⇒ s 6|= φ

s |= φ1 ∨ φ2 ⇐⇒ (s |= φ1 or s |= φ2)
s |= P . p〈ψ〉 ⇐⇒ infσ Prs

M,σ{π ∈ Π∞
M,σ(s) | π |= ψ} . p

s |= P / p〈ψ〉 ⇐⇒ supσ Prs
M,σ{π ∈ Π∞

M,σ(s) | π |= ψ} / p

with π = s0; λ0; s1; λ1 . . ., . ∈ {>,≥}, / ∈ {<,≤} and σ ∈ ΣM. Moreover, M |= φ iff si |= φ.

4 VERIFICATION AND REFUTATION OF PROBABILISTIC SPECIFICATIONS VIA GAMES

For any PCTL path formula, the set of paths satisfying it is measurable [30]. For MDPs,
properties like P ./ p〈ψ〉 are universal as threshold ./ p must be met under all strategies. Con-
versely, properties like ¬P ./ p〈ψ〉 hold iff there exists a strategy that violates the threshold.

We use standard methods to lift any relation to a relation over distributions [18]. For
any relation R ⊆ X × Y we let RD ⊆ DX ×DY be the relation such that λX RD λY iff there
is a weight function δ ∈ X ×Y → [0, 1] with (for all x ∈ X, y ∈ Y):

λX(x) = ∑y′∈Y δ(x, y′) λY(y) = ∑x′∈X δ(x′, y) δ(x, y) > 0 ⇒ x R y (1)

3 Game-based abstraction framework
We now introduce the components of our abstraction framework. We start by formally
defining a class of games (G) and an embedding function (emb : M � G), which casts MDPs
into G. We then define an abstraction preorder (vp ⊆ G × G) as a relation over games. Our
last component is a four-valued PCTL semantics (|=!, |=? ⊆ G ×Φ) over games. Finally, we
show our components satisfy some necessary soundness properties. With these components
and properties we then show how to verify and refute arbitrary PCTL properties of MDPs.

Stochastic two-player games (G) In comparison to MDPs, games are equipped with an
additional level of choice (i.e. their transition function yields sets of sets of distributions).
Games also have four-valued propositional labelling (through a must and may labelling):

DEFINITION 4. A stochastic two-player game G is a tuple 〈S, si, T, L!, L?〉, where:
– S is a countable set of states;
– si ∈ S is an initial state;
– T ∈ S → PPDS is a transition function;
– L!, L? ∈ S× AP → B are labelling functions.

By definition of P we ensure totality for T: i.e. we have |T(s)| > 0 for all s ∈ S and |Λ| > 0
for all Λ ∈ T(s). Let G be the class of all games. We define player 1 states as elements of S,
player 2 states as sets of distributions over player 1 states (PDS) and probabilistic states as
distributions over player 1 states (DS). From a player 1 state s ∈ S player 1 can transition to
a player 2 state Λ ∈ PDS iff Λ ∈ T(s) (written s →1 Λ). Analogously, from a player 2 state
Λ ∈ PDS player 2 can transition to a probabilistic state λ ∈ DS iff λ ∈ Λ (written Λ →2 λ).
Finally, from a probabilistic state λ ∈ DS the game transitions to a player 1 state s′ ∈ S with
probability λ(s′) (written λ →p s′).

A play in G is a sequence of transitions‡ and hence necessarily strictly alternates be-
tween player 1 states, player 2 states and probabilistic states. Let ΠG and Π∞

G be the set of
all finite and infinite plays of G, respectively. For Ω ⊆ S∪PDS∪DS we write, e.g., ΠG(Ω)
to restrict to plays starting with an element in Ω.

A player 1 strategy is a partial function σ1 ∈ ΠG → DPDS, with domain of definition
all π with LAST(π) ∈ S, such that σ1(π) ∈ D(T(LAST(π))). Analogously, a player 2 strategy
is a partial function σ2 ∈ ΠG → DDS with domain of definition all π with LAST(π) ∈ PDS,
such that σ2(π) ∈ D(LAST(π)). We write Σ1

G and Σ2
G for the set of all player 1 and player

‡We will manipulate plays as if they are sequences over S ∪PDS ∪DS.

MARK KATTENBELT AND MICHAEL HUTH FSTTCS 2009 5

2 strategies, respectively. A play π of G is consistent with σ1 ∈ Σ1
G if for every i ≤ |π| − 1

with π(i) ∈ S the probability σ1(πi)(π(i + 1)) is positive. Similarly, π is consistent with
σ2 ∈ Σ2

G if σ2(πi)(π(i + 1)) is positive whenever π(i) ∈ PDS. For σ1 ∈ Σ1
G and σ2 ∈ Σ2

G we
write, e.g., ΠG,σ1,σ2 to restrict to plays consistent with σ1 and σ2. For σ1 ∈ Σ1

G and σ2 ∈ Σ2
G

and Π ⊆ ΠG,σ1,σ2 , we denote with Π↑σ1,σ2 the infinite plays of G that are consistent with both
σ1 and σ2 and have a prefix in Π.

Given strategies σ1 ∈ Σ1
G and σ2 ∈ Σ2

G the behaviour of G is purely probabilistic.
Hence, for each ω ∈ S ∪ PDS ∪DS, using standard techniques [23], we construct a prob-
ability space over infinite plays Π∞

G,σ1,σ2
({ω}) with probability measure Prω

G,σ1,σ2
such that

Prω
G,σ1,σ2

({ω}↑σ1,σ2) = 1 and, for every finite play of non-zero length π ∈ ΠG,σ1,σ2({ω}):

Prω
G,σ1,σ2

({π}↑σ1,σ2) =

Prω

G,σ1,σ2
({π′}↑σ1,σ2) · σ1(π′)(Λ′) if (π = π′ →1 Λ′)

Prω
G,σ1,σ2

({π′}↑σ1,σ2) · σ2(π′)(λ′) if (π = π′ →2 λ′)
Prω

G,σ1,σ2
({π′}↑σ1,σ2) · LAST(π′)(s′) if (π = π′ →p s′)

REMARK 5. In figures we depict player 1 states with big open circles, player 2 states with
small filled squares and probabilistic states with filled black circles. Labels depict the prob-
ability of transitions (omitted for point distributions). We write a!, a? and a!? next to s iff
L!(s, a) ∧ ¬L?(s, a), ¬L!(s, a) ∧ L?(s, a) or L!(s, a) ∧ L?(s, a) resp., and nothing otherwise.

The roles of player 1 & 2 Before we define the components of our abstraction framework
we first give an informal account of how a game Ĝ (over states Ŝ) abstracts an MDP M (over
states S). Intuitively, to be sound for PCTL — or any unrestricted branching-time logic — Ĝ
must both under and over-approximate the strategies that are feasible in M. Observe that
a strategy of M is simply a particular resolution of non-determinism in M and hence, to
under and over-approximate feasible strategies of M, Ĝ must under and over-approximate
the non-deterministic choice T(s) ∈ PDS in each state of M.§ We use player 1 states of Ĝ to
represent sets of states of M and player 2 states of Ĝ to approximate the non-deterministic
choices of these states (i.e. player 2 resolves the non-determinism of M). Informally, in ŝ ∈ Ŝ
player 1 can choose from T̂(ŝ) ∈ PPDŜ at least one player 2 state that under-approximates
T(s) and one player 2 state that over-approximates T(s) for every concrete state s ∈ S of
M that ŝ abstracts. As ŝ may abstract many states of M, and for each such state we have
both under and over-approximating player 2 choices, there may be many player 1 choices
in T̂(ŝ). Hence, player 1 resolves non-determinism introduced by abstraction.
The embedding function (emb) The first component of our framework is an embedding
function emb : M � G, which yields an exact representation emb(M) in G for each MDP M.
The embedding function allows us to treat MDPs as a special kind of game.

DEFINITION 6. Let emb ∈ M → G be the function which for every MDP M = 〈S, si, T, L〉
yields a game G = 〈S, si, T̂, L, L〉 such that T̂(s) = {T(s)} for every s ∈ S.

Embedded MDPs are exact representations of MDPs in G. Intuitively, we ascribe all of
M’s non-determinism to player 2. That is, player 2 strategies Σ2

G have a one-to-one corre-
spondence with ΣM. Moreover, player 1 has no power (i.e. |Σ1

G| = 1).

§Below, we formalise this under/over-approximation in the definition of the preorder vp.

6 VERIFICATION AND REFUTATION OF PROBABILISTIC SPECIFICATIONS VIA GAMES

s3

s2

s1 s1

s3

s2

λ3

λ2

λ4

λ1 λ1

Λa

Λb

(a) Player 1 choices in T(s1) = {Λ̂a, Λ̂b}.

s3

s2s1

{ 2
3 · λa + 1

3 · λb | λa ∈ Λa, λb ∈ Λb}

s1

2
3 · λ1 + 1

3 · λ2

s3

s2

λ2

λ1

(b) Combined player 1 (left) and 2 (right) transitions.

Figure 1: A geometrical interpretation of games.

EXAMPLE 7. Consider a program with two 8-bit unsigned integers x, y which first initialises
y non-deterministically and then assigns to x, uniformly at random, a number between 0
and 255. We model this program with an MDP M and depict emb(M) in Fig. 3(a).

Combined player 1 & 2 transitions Prior to introducing our next component — the ab-
straction preorder vp — we need to introduce combined transitions. Combined transitions
will enable the preorder take into account that players can make probabilistic choices. Com-
bined transitions are well understood for MDPs but are less well-known in games. To ex-
plain combined transitions observe that we can interpret probability distributions λ ∈ DS
geometrically as points on a plane in |S|-dimensional Euclidean space [27]. Hence, we can
interpret the choices available to player 2 and player 1 as a set of points and a set of set of points,
respectively. We illustrate in Fig. 1(a) the choice T(s1) = {Λa, Λb} = {{λ1, λ2}, {λ3, λ4, λ5}}
available to player 1 in a state s1 (over a state space {s1,s2,s3}).

In the player 2 state Λa ∈ PDS player 2 can make a probabilistic choice over probabilistic
states {λ1, λ2}. Hence, it is appropriate to think of Λa as defining the hull of a convex shape
from which player 2 can draw any probabilistic state (see Fig. 1(b)). To formalise this, akin
to [29], we introduce combined player 2 transitions. A combined player 2 transition is a move
from a player 2 state Λ ∈ PDS to a probabilistic state λ ∈ DS, denoted Λ →C

1 λ, iff for
some ∑i wi · [λi] ∈ DΛ we have λ = ∑i wi · λi.

Because player 2 choices are interpreted as convex shapes, the choice available to player
1 in s1 is a set of convex shapes T(s1) = {Λa, Λb}. Player 1 can also take any weighted com-
bination of these convex shapes (see Fig. 1(b)). We extend the existing notion of combined
transitions over sets of distributions from [29] to combined transitions over sets of sets of
distributions as follows: a combined player 1 transition is a move from a player 1 state s ∈ S to
a player 2 state Λ ∈ PDS, denoted s →C

1 Λ, if and only if for some ∑i wi · [Λi] ∈ D(T(s))
we have Λ = {∑i wi · λi | λi ∈ Λi for all i}.
The abstraction preorder (vp) We can now define the abstraction preorder — a relation
vp ⊆ G × G over games. Intuitively, this preorder defines a notion of precision in G; that
is, Ĝ vp G has the meaning that Ĝ is less precise (i.e. an abstraction of) G. We can therefore
employ the embedding function to define when a game Ĝ abstracts an MDP M (i.e. when
Ĝ vp emb(M)).

We definevp through a new notion of simulation over games. We consider simulations
over disjoint unions Ĝ⊕ G of games (defined in the obvious way):

MARK KATTENBELT AND MICHAEL HUTH FSTTCS 2009 7

ŝ2

ŝ1

ŝ0

1
2

ŝ3

a?

c!?

c?

λ̂2
Λ̂2

1
2

1
2

Λ̂1

λ̂1

λ̂3
1
2

s2

s1 s4

s3

1
4

1
4

1
3

1
5

4
5

2
3

c!?

a!?

λ2

λ1
1
2

vp s0 Λ1

(a) Game Ĝ and embedding emb(M) s.t. Ĝ vp emb(M).

b!?
ŝ2

ŝ0 vp

a!?
ŝ1

a!?
s1

b!?

1
2

1
2s0

s2

b!?
ŝ2

ŝ0

a!?
ŝ1

a!?
s1

b!?

s0
s2

1
2

1
2

pw

vp

(b) Pairs of games Ĝ and G in vp.

Figure 2: Games illustrating various points in the paper.

DEFINITION 8. Let G = 〈S, si, T, L!, L?〉 be a game and let R ⊆ S× S be a relation on S. We
call R a strong probabilistic game-simulation iff for all s′ R s the following conditions hold:

(i) L!(s′, a) ⇒ L!(s, a) for all a ∈ AP

(ii) L?(s′, a) ⇐ L?(s, a) for all a ∈ AP

(iii) ∀s →1 Λ : ∃s′ →C
1 Λ′ : ∀Λ′ →2 λ′ : ∃Λ →C

2 λ : λ′ RD λ

(iv) ∀s →1 Λ : ∃s′ →C
1 Λ′ : ∀Λ →2 λ : ∃Λ′ →C

2 λ′ : λ′ RD λ

Moreover, for games Ĝ = 〈Ŝ, ŝi, T̂, L̂!, L̂?〉 and G = 〈S, si, T, L!, L?〉 we let Ĝ vp G iff the
largest¶ strong probabilistic game-simulation R on Ĝ⊕ G includes ŝi R si.

Intuitively, the meaning of ŝ R s is that ŝ abstracts s. Conditions (i) and (ii) ensure that
the labelling in ŝ soundly approximates that of s. The innermost quantifier pair in (iii) for-
mally defines under-approximation of player 2 states: i.e. Λ̂ ∈ PDŜ under-approximates
Λ ∈ PDS iff all transitions Λ̂ →2 λ̂ can be simulated by a combined player 2 transition
Λ →C

2 λ. That is, for these player 2 states, player 2 in G is more powerful than player 2 in
Ĝ. The innermost quantifier pair of (iv) defines over-approximation analogously.

Recall that player 1 transitions s →1 Λ are such that Λ represents an under or over-
approximation of non-determinism in an MDP state that s abstracts. As ŝ abstracts all
MDP states that s abstracts, player 1 in ŝ must both under and over-approximate all player
1 transitions s →1 Λ with some combined player 1 move ŝ →C

1 Λ̂. This under/over-
approximation is realised by the outermost quantifier pair of (iii) and (iv), respectively.

EXAMPLE 9. Consider games Ĝ and emb(M) in Fig. 2(a). The largest strong prob. game-
simulation R over Ĝ⊕ emb(M) trivially includes 〈ŝ1, s2〉, 〈ŝ1, s3〉, 〈ŝ2, s1〉, 〈ŝ2, s3〉, 〈ŝ2, s4〉 and
〈ŝ3, s2〉. To see ŝ0 R s0, i.e. Ĝ vp emb(M), observe that (iii) for Λ1 ∈ T(s0) is satisfied by Λ̂2 ∈
T̂(ŝ0) as λ̂3 RD λ1 and (iv) is satisfied by Λ̂1 ∈ T̂(ŝ0) as λ̂1 RD λ1 and 2

3 · λ̂1 + 1
3 · λ̂2 RD λ2.

Generality of vp Intuitively, in [24], the non-determinism in each MDP state that ŝ ab-
stracts is exactly approximated (i.e. both under and over-approximated) by a normal player
1 transition ŝ →1 Λ̂. Our main ability to lose precision arises from the ability to under/over-
approximate T(s′) with separate player 1 transitions (in combination with the use of com-
bined transitions). We illustrate the use of combined transitions with two examples.

¶The largest strong game-simulation in a game is the union of all its strong game-simulations.

8 VERIFICATION AND REFUTATION OF PROBABILISTIC SPECIFICATIONS VIA GAMES

Firstly, the use of combined transitions allows us to abstract probabilistic choice with
player 1 non-determinism (see Fig. 2(b) (bottom)). As it is expensive to abstract probabilistic
choice it may be advantageous to initially abstract probabilistic behaviour in this way.

Secondly, observe the equivalence classes of vp define a notion of equivalence in G (i.e.
G and G′ are equivalent iff G vp G′ and G′ vp G). Fig. 2(b) (top) illustrates that through this
equivalence we can consider more compact representations without losing any precision.
Abstract PCTL semantics (|=!, |=?) The final component of our abstraction framework is a
four-valued abstract PCTL semantics |=!, |=? ⊆ G ×Φ for games. Informally, G |=! φ (resp.
G |=? φ) holds only if all MDPs that G abstracts must (resp. may) satisfy φ.

DEFINITION 10. Let G = 〈S, si, T, L!, L?〉 be a game and let φ ∈ Φ be a PCTL formula. We
define must/may relations for states |=!, |=? ⊆ S × Φ and plays |=!, |=? ⊆ Π∞

G (S) × Ψ as
follows (letting ∗ ∈ {!, ?}, ¬! = ? and ¬? = !):

π |=∗ Xφ ⇐⇒ s1 |=∗ φ

π |=∗ φ1U
≤kφ2 ⇐⇒ ∃i≤k :

(
si |=∗ φ2 ∧ (∀j<i : sj |=∗ φ1

)
s |=∗ a ⇐⇒ L∗(s, a)
s |=∗ ¬φ ⇐⇒ s 6|=¬∗ φ

s |=∗ φ1 ∨ φ2 ⇐⇒ (s |=∗ φ1 or s |=∗ φ2)

s |=! P . p〈ψ〉 ⇐⇒ infσ1 infσ2 Prs
G,σ1,σ2

{π ∈ Π∞
G,σ1,σ2

(s) | π |=! ψ} . p

s |=? P . p〈ψ〉 ⇐⇒ supσ1
infσ2 Prs

G,σ1,σ2
{π ∈ Π∞

G,σ1,σ2
(s) | π |=? ψ} . p

s |=! P / p〈ψ〉 ⇐⇒ supσ1
supσ2

Prs
G,σ1,σ2

{π ∈ Π∞
G,σ1,σ2

(s) | π |=? ψ} / p

s |=? P / p〈ψ〉 ⇐⇒ infσ1 supσ2
Prs

G,σ1,σ2
{π ∈ Π∞

G,σ1,σ2
(s) | π |=! ψ} / p

with π = s0; Λ0; λ0; s1 . . ., . ∈ {>,≥}, / ∈ {<,≤}, σi ∈ Σi
G. Moreover, G |=∗ φ iff si |=∗ φ.

The four-valued semantics of propositional and temporal operators is standard. The
only non-standard semantics is that of the probabilistic operator P ./ p〈ψ〉. Recall P ./ p〈ψ〉
holds for an MDP if all MDP-schedulings meet the threshold ./ p. As player 2 represents
MDP non-determinism, for a lower threshold . p (upper threshold / p) we take the infimum
(supremum) over player 2 strategies, regardless of whether we are evaluating in the must
or may modality. In contrast, whether we take the infimum or supremum over player 1
strategies depends only on the modality. That is, if we are evaluating in the must modality
we quantify pessimistically over player 1 strategies (inf. for . p, sup. for / p) and in the
may modality we quantify optimistically over player 1 strategies (sup. for . p, inf. for / p).
For lower thresholds, the modality in which we evaluate path properties corresponds to the
modality in which we are evaluating — this has to be inverted for upper thresholds / p.
Soundness properties Before we can verify and refute judgments over MDPs via games,
we need to show our components satisfy the following properties:

LEMMA 11. For all MDPs M and φ ∈ Φ we have M |= φ ⇔ emb(M) |=! φ ⇔ emb(M) |=? φ.

PROOF. Follows directly from the fact that embedded MDPs have two-valued proposi-
tional labelling, i.e. L! = L?, and one trivial player 1 strategy, i.e. |Σ1

G| = 1.

MARK KATTENBELT AND MICHAEL HUTH FSTTCS 2009 9

y:0
x:0

si

y:0
x:0

y:255
x:0

x:255
y:0

x:255
y:255

1
256

1
256

y:255
x:0

1
256

1
256

. . .

. . .

. . .

. . .

x leq y!?

x leq y!?

x leq y!?

. . .

. . .

. . .

(a)

x leq y!?

x > y

x ≤ y

ŝi . . .
.

x:0
y:

(b)

ŝi y:

x leq y!?

x > y

x ≤ y

255
256

1
256x:0

(c)

Figure 3: The MDP (a) and the two game abstractions (b) and (c) from Example 14.

THEOREM 12. For all games Ĝ, G such that Ĝ vp G and all PCTL properties φ ∈ Φ we have
(Ĝ |=! φ ⇒ G |=! φ) and (Ĝ 6|=? φ ⇒ G 6|=? φ).

PROOF. We only sketch the structure of the proof here. Let ŝ be any state of Ĝ and let s
be any state of G, respectively. The proof shows that ŝ |=! φ ⇒ s |=! φ and, dually, that
s |=? φ ⇒ ŝ |=? φ. The main complexity of the proof is due to properties P ./ p〈ψ〉.

Intuitively, due to (iii) of Def.8, for any player 1 strategy in G, player 1 in Ĝ can choose a
strategy under which it knows player 2 must be less powerful in Ĝ than in G, which ensures
s |=? P ./ p〈ψ〉 ⇒ ŝ |=? P ./ p〈ψ〉. Dually, (iv) of Def. 8 guarantees that for every player 1
strategy in G, player 1 in Ĝ can choose a strategy under which it knows player 2 is more
powerful in Ĝ than it is in G, which ensures ŝ |=! P ./ p〈ψ〉 ⇒ s |=! P ./ p〈ψ〉.

Lem. 11 ensures consistency across the two representations of MDPs whereas Th. 12 en-
sures that any property that is |=!-satisfied (not |=?-satisfied) by a game Ĝ is also |=!-satisfied
(not |=?-satisfied) by any game that is less abstract than Ĝ — including MDP embeddings.

Verification & refutation via games We can now verify the judgment M |= φ by construct-
ing a game G that abstracts M (i.e. G vp emb(M)) and that !-satisfies φ (i.e. G |=! φ). It is
easy to see this: by Th. 12 emb(M) |=! φ and by Lem. 11 this is equivalent to M |= φ. Analo-
gously, we can refute M |= φ by finding a game G such that G vp emb(M) and G 6|=? φ (i.e.
by Th. 12 emb(M) 6|=? φ; by Lem. 11 M 6|= φ).

For some games G it may be that both G 6|=! φ and G |=? φ. In this case we can neither
verify nor refute M |= φ and we need to consider refining G.

EXAMPLE 13. For Ĝ and emb(M) of Fig. 2(a), as Ĝ vp emb(M) and Ĝ |=! ¬P> 0.5〈Xa〉, using
Lem. 11 and Th. 12, we have verified M |= ¬P> 0.5〈Xa〉: some scheduling of M satisfies Xa
with probability of at most 0.5. However, as Ĝ 6|=! P≤ 0.5〈Xa〉 and Ĝ |=? P≤ 0.5〈Xa〉 we can
neither verify nor refute via Ĝ whether this threshold holds for all schedulings of M.

Finally, once we find a game G via which we, say, verify M |= φ, we can claim this
judgment holds and use G as a certificate to our claim. To confirm our claim one would
have to perform the checks G vp emb(M) and G |=! φ. Analogously, we can use games as
refutation certificates. We demonstrate our framework with a final motivating example:

10 VERIFICATION AND REFUTATION OF PROBABILISTIC SPECIFICATIONS VIA GAMES

EXAMPLE 14. Reconsider the program and embedded MDP emb(M) of Example 7. Suppose
we wish to check the program stops with x ≤ y with a probability greater than 0.003 (i.e.
M |= P> 0.003〈true U≤∞ x leq y〉). We consider a partition which joins all states before the
probabilistic assignment and which, after the assignment, divides states according to the
predicate x ≤ y. Fig. 3(b) depicts the (optimal) game G constructed with the techniques in
[24]. We can verify our judgment with this game; however, G has many transitions because
the probability of x ≤ y is different for each initial value of y. With the framework presented
in this paper we can verify the judgment with the game Ĝ depicted in Fig. 3(c) — a much
more compact game defined over the same partition.

4 Discussion and conclusions
We motivated the need for an abstraction-based framework for the verification and refuta-
tion of PCTL specifications of MDPs. We constructed such a framework by taking the game
abstractions from [24], developing an abstraction preorder and abstract PCTL semantics for
these games, and proving these components meet certain soundness properties.

This preorder enables us to lose precision — even for a fixed partitioning of MDP states.
This allows us to verify and refute properties of MDPs with more compact games. In many
cases losing precision is essential. For example, when abstracting program statements under
predicates that contain non-linear arithmetic, computing the optimal abstraction for a set of
predicates is very inefficient. Through our abstraction preorder, by losing precision, we may
be able to obtain abstractions more efficiently in such cases — for example by considering
incrementally precise abstractions over a fixed partition, akin to software model checkers.
However, to automate this we need to augment our framework with a refinement proce-
dure. Although procedures exists to refine optimal partition abstractions of games [21, 22],
we have not yet adapted these procedures to deal with the additional causes of imprecision
that occur in our framework.

The game abstractions considered in practice (in, e.g., [22]) are known to be abstrac-
tions by construction — there is no need to check the conditions of vp. Nevertheless, the
computational complexity of deciding vp and |=!, |=? are still of interest. In a preliminary
unpublished version of this paper [19] we show vp without combined player 1 transitions
is decidable in P and |=!, |=? are decidable in NP∩ co-NP.

There is potential to improve precision of our framework as follows: one could equip
games with separate must/may transition functions to distinguish under-approximating
from over-approximating player 2 states (c.f. [26, 10]). That is, in (iii) of Def. 8 and in the
must evaluations of Def. 10 one would use the must transitions and in (iv) of Def. 8 and in
the may evaluations of Def. 10 one would use the may transitions. This change would not
increase precision for partition abstractions.
Related work In recent papers, many orthogonal challenges related to game abstractions
have been addressed: in [21, 22] it is outlined how optimal game abstractions can be con-
structed from language-level descriptions via SAT; in [20, 22] it is explained how good par-
tition abstractions can be found using automated abstraction refinement.

For probabilistic systems, abstraction frameworks include probabilistic extensions of
existential abstraction [11, 16], where MDP are abstracted by MDPs again through the strong

MARK KATTENBELT AND MICHAEL HUTH FSTTCS 2009 11

(probabilistic) simulation preorder of [18, 29]. Other frameworks abstract probabilities with
intervals (e.g. [18, 17, 13, 4]). When considering these frameworks as an abstraction frame-
work for MDPs we observe the abstract models are unable to distinguish non-determinism
of the concrete MDP from the non-determinism that arises through abstraction. As a result,
refuting a property P≤ p〈ψ〉, i.e. showing there exists a strategy that exceeds p, can only be
achieved by establishing all strategies exceed p. As this may not be true for some MDPs
the property may not be refutable with these abstractions. By separating the two kinds of
non-determinism, our framework does not suffer from the same problem. Note that our
argument relies on the presence of non-determinism and does not occur when considering
the abstraction schemes in, e.g., [29, 17, 13] as abstraction frameworks for Markov chains
(MCs). In fact, our preorder is essentially the strong probabilistic simulation of [29] when
restricted to MCs. Finally, we mention [4] in which more efficiently checkable abstractions
are obtained by eliminating non-determinism (i.e. MDPs are abstracted by MCs).

For non-probabilistic systems, sound verification and refutation of temporal logics have
mostly been developed in a (sometimes implicit) three-valued setting [26, 10]. Our results in
the probabilistic setting are, notably, informed by work on modal/mixed transitions system
[26, 10] and three-valued abstraction of games [12].

References

[1] T. Ball, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs.
SIGPLAN Notices, 36(5):203–213, 2001.

[2] N. D. Belnap. A useful four-valued logic. In Modern Uses of Multiple-valued Logics, pp.
8–37, 1977.

[3] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic sys-
tems. In Proc. of FSTTC ‘95, vol. 1026 of LNCS, pp. 499–513, 1995.

[4] R. Chadha, M. Viswanathan, and R. Viswanathan. Least upper bounds for probability
measures and their applications to abstractions. In Proc. of CONCUR ‘08, vol. 5201 of
LNCS, pp. 264–278, 2008.

[5] E. Clarke and E. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs: Workshop, vol. 131 of LNCS, 1981.

[6] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predicate
abstraction for ANSI-C. In Proc. of TACAS ‘05, vol. 3440 of LNCS, pp. 570–574, 2005.

[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. In Proc. of CAV ‘00, vol. 1855 of LNCS, pp. 154–169, 2000.

[8] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
TOPLAS, 16(5):1512–1542, 1994.

[9] A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
[10] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM

TOPLAS, 19(2):253–291, 1997.
[11] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reduction and refinement

strategies for probabilistic systems. In Proc. of PAPM-PROBMIV ‘02, vol. 2399 of LNCS,
pp. 57–76, 2002.

12 VERIFICATION AND REFUTATION OF PROBABILISTIC SPECIFICATIONS VIA GAMES

[12] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games:
Uncertainty, but with precision. In Proc. of LICS ‘04, pp. 170–179, 2004.

[13] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Proc. of
SPIN ‘06, vol. 3925 of LNCS, pp. 71–88, 2006.

[14] T. Han and J. Katoen. Counterexamples in probabilistic model checking. In Proc. of
TACAS ’07, vol. 4424 of LNCS, pp. 72–86, 2007.

[15] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

[16] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Proc. of CAV ‘08, vol.
5123 of LNCS, pp. 162–175, 2008.

[17] M. Huth. On finite-state approximants for probabilistic computation tree logic. TCS,
346(1):113–134, 2005.

[18] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In
Proc. of LICS ‘91, pp. 266–277, 1991.

[19] M. Kattenbelt and M. Huth. Abstraction framework for Markov decision processes and
PCTL via games. TR RR-09-01, OUCL, 2009.

[20] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. A game-based abstraction-
refinement framework for Markov decision processes. TR RR-08-06, OUCL, 2008.

[21] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Game-based probabilistic
predicate abstraction in PRISM. In Proc. of QAPL ‘08, vol. 220 of ENTCS, pp. 5–21, 2008.

[22] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refinement
for probabilistic programs. In Proc. of VMCAI ‘09, vol. 5403 of LNCS, pp. 182–197, 2009.

[23] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. 2 edition, 1976.
[24] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov

decision processes. In Proc. of QEST ‘06, pp. 157–166, 2006.
[25] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of prob-

abilistic timed automata. In Proc. of FORMATS ‘09, pp. 212–227, 2009.
[26] K. G. Larsen and B. Thomsen. A modal process logic. In Proc. of LICS ‘88, pp. 203–210,

1988.
[27] A. K. McIver, C. C. Morgan, and C. Gonzalia. Proofs and refutations for probabilistic

refinement. In Proc. of FM ‘08, vol. 5014 of LNCS, pp. 100–115, 2008.
[28] J. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.

In Proc. of Symposium on Programming ‘05, vol. 137 of LNCS, pp. 337–351, 1982.
[29] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In Proc.

of CONCUR ‘94, LNCS, pp. 481–496, 1994.
[30] M. Vardi. Verification of probabilistic concurrent finite-state programs. In Proc. of FOCS

‘85), pp. 327–338, 1985.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

	Introduction
	Background
	Game-based abstraction framework
	Discussion and conclusions

