
Using Quantitative Analysis to Implement Autonomic IT Systems

Radu Calinescu and Marta Kwiatkowska
Computing Laboratory, University of Oxford

{Radu.Calinescu, Marta.Kwiatkowska}@comlab.ox.ac.uk

Abstract

The software underpinning today’s IT systems needs to
adapt dynamically and predictably to rapid changes in sys-
tem workload, environment and objectives. We describe
a software framework that achieves such adaptiveness for
IT systems whose components can be modelled as Markov
chains. The framework comprises (i) an autonomic archi-
tecture that uses Markov-chain quantitative analysis to dy-
namically adjust the parameters of an IT system in line with
its state, environment and objectives; and (ii) a method for
developing instances of this architecture for real-world sys-
tems. Two case studies are presented that use the frame-
work successfully for the dynamic power management of
disk drives, and for the adaptive management of cluster
availability within data centres, respectively.

1. Introduction

In order to support the latest advances in research, busi-
ness and everyday services, software has evolved dramat-
ically over the past decade. For the architects, develop-
ers and administrators of the software underpinning today’s
ubiquitous, mobile and context-aware IT systems, this evo-
lution has brought significant new challenges. Key among
these challenges is the need for software that adapts in a
predictable way to continuously changing workloads, sce-
narios and user objectives.

Autonomic computing represents a promising approach
to achieving such adaptiveness by adding self-management
capabilities to the components of an IT system [15, 21, 22,
29]. Fig. 1 depicts the high-level architecture of an auto-
nomic computing system. Given a set of user-specified poli-
cies (i.e., system objectives), an autonomic manager moni-
tors the system components through sensors, uses its knowl-
edge to analyse their state and to plan changes in their con-
figurable parameters, and implements (or “executes”) these
changes through effectors.

We present a new framework comprising a software re-
alisation of the architecture in Fig. 1, and a method for de-

Figure 1. Autonomic computing system

veloping instances of this architecture for real-world IT sys-
tems. The novel characteristics of our framework are:

1) The knowledge within the autonomic manager consists
of a continuous- or discrete-time Markov chain that
models the behaviour of the managed IT components.

2) Runtime quantitative analysis of the Markov chain is
employed for the analysis step in Fig. 1.

3) The autonomic manager is implemented as a web service
that integrates the generic policy engine from [3] and the
quantitative analysis tool PRISM [18].

4) Off-the-shelf tools are used for the computer-assisted
generation of the manageability adaptor from Fig. 1
starting from the Markov chain.

5) The autonomic manager can be configured dynamically
to manage any IT components whose behaviour can be
specified by means of a Markov chain. To achieve this,
a model of the IT components is generated from the
Markov chain, and supplied to a running instance of the
autonomic manager.

This framework has several significant advantages over ex-
isting approaches to autonomic system development. First,
it is generic—our autonomic manager can be reconfigured
for use with any legacy or future IT system whose behaviour
(that is relevant to the planned autonomic application) can

Figure 2. DPM-enabled device

be specified using a Markov chain. In contrast, current auto-
nomic solutions use dedicated, proprietary autonomic man-
agers for different applications (e.g., [4, 6, 19]). Second,
the autonomic systems developed using the framework can
implement a rich and flexible set of high-level policies that
is unavailable in existing autonomic solutions. This is due
to the broad spectrum of quantitative properties that can
be specified in the temporal logics supported by PRISM
[16, 17, 18], the quantitative analysis tool integrated within
our autonomic manager. Finally, the decisions taken by the
autonomic manager are based on an exhaustive analysis of
the user-specified policies and of the managed IT compo-
nents. This powerful capability is made possible by our use
of runtime quantitative analysis.

2. Background

Quantitative analysis of Markov chains PRISM [18] is
a probabilistic model checker/quantitative analysis tool de-
veloped by the University of Oxford’s Quantitative Analy-
sis and Verification Group. The tool is used for the analysis
of probabilistic models including discrete- and continuous-
time Markov chains (DTMCs and CTMCs) [17] expressed
in the PRISM high-level, state-based language.

Cost/reward-augmented versions of probabilistic com-
putational tree logic (PCTL) [9] and continuous stochastic
logic (CSL) [1] are used to specify the quantitative proper-
ties to analyse for DTMC and CTMC models, respectively
[16]. To illustrate this process, we consider the dynamic
power management (DPM) of a device with the architec-
ture in Fig. 2. The device consists of a service provider that
handles requests generated by a server requester and stored
in a request queue. The service provider has several pos-
sible states corresponding to different power consumption
and service rates, and its state transitions are controlled by
a power manager that aims to optimise power consumption
while maintaining an acceptable level of service for the de-
vice. Fig. 3 shows the PRISM representation of the CTMC
model of a Fujitsu disk drive that matches the structure in
Fig. 2, and which was introduced in [25].

The rewards. . . endrewards constructs in Fig. 3 define
real values associated with certain CTMC states and transi-

ctmc

const double sleep2idle=10/16; // sleep-to-idle transition rate
const double idle2sleep=100/67; // idle-to-sleep transition rate
const double service=1000/8; // service rate

// SERVICE PROVIDER
module SP

sp : [0..2]; // SP states: 0 – sleep, 1 – idle, 2 – busy

// State transitions
[sleep2idle] sp=0 & q=0 –> sleep2idle : (sp’=1);
[sleep2idle] sp=0 & q>0 –> sleep2idle : (sp’=2);
[idle2sleep] sp=1 & q=0 –> idle2sleep : (sp’=0);
[request] sp=1 –> (sp’=2);
[request] !sp=1 –> true;
[serve] sp=2 & q>1 –> service : (sp’=2);
[serve] sp=2 & q=1 –> service : (sp’=1);

endmodule

const int QMAX=20; // size of request queue
const double interArrivalTime; // request inter-arrival time

// SERVICE REQUESTER AND SERVICE REQUEST QUEUE
module SRQ

q : [0..QMAX]; // Request queue states

// State transitions
[request] true –> 1000/interArrivalTime : (q’=min(q+1,QMAX));
[serve] q>1 –> (q’=q-1);

endmodule

const double switchToSleepProbability; // PM configuration parameter

// POWER MANAGER
// – when idle, sleep with probability switchToSleepProbability
module PM

p : [0..1]; // PM states: 0 – sleep to idle, 1 – idle to sleep

// State transitions
[serve] q=1 –> switchToSleepProbability : (p’=1);
[serve] q=1 –> 1−switchToSleepProbability : (p’=0);
[serve] q>1 –> true;
[request] true –> (p’=0);
[sleep2idle] q=QMAX –> (p’=p);
[idle2sleep] p=1 –> (p’=0);

endmodule

const double referenceTimeInterval=100;

rewards “power” // expected average power over 100s
sp=0 : 0.13/referenceTimeInterval;
sp=1 : 0.95/referenceTimeInterval;
sp=2 : 2.15/referenceTimeInterval;
[sleep2idle] true : 7.0/referenceTimeInterval;
[idle2sleep] true : 0.067/referenceTimeInterval;

endrewards

rewards “queueLength” // expected average queue length over 100s
true : q/referenceTimeInterval;

endrewards
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

..
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

.........

........

........

...

.........

........

........

..

...

...............
..............

..............
..............

..............
......... STATE PARAMETER

.........

........

........

...

.........

........

........

...

..

.................
................

................
................

................
...... CONFIGURATION PARAMETER

.........

........

........

...

.........

........

........

..

...

.........

...
........
........
........
........
....

DERIVED PARAMETER

.........

........

........

..

.........

........

........

..

..

.........

........

... DERIVED PARAMETER

Figure 3. CTMC of a Fujitsu disk drive taken
from [25]; a PRISM representation was avail-
able from [24].

tions. E.g., the “power” rewards construct associates:
• a value of 0.13/referenceTimeInterval with the sp = 0

(i.e., the sleep) state of the service provider
• and a value of 7.0/referenceTimeInterval with its

sleep2idle transition,
where 0.13 watts is the power consumed by the disk drive

Figure 4. PRISM experiment: expected power
usage and expected queue length for two
request inter-arrival times and a range of
“switch to sleep” probabilities.

in the sleep state, 7.0 joules is the energy used for a sleep-
to-idle transition, and referenceTimeInterval > 0 represents
the length of the time interval over which we intend to cal-
culate the expected average power utilisation for the device.
This calculation is performed by PRISM when presented
with the “cumulative reward” property

R{"power"}=? [C ≤ referenceTimeInterval]. (1)

Similarly, the quantitative analysis of the PRISM property

R{"queueLength"}=? [C ≤ referenceTimeInterval] (2)

yields the expected average queue length during the first
referenceTimeInterval seconds of operation. For a descrip-
tion of the techniques used for this analysis see [18].

The properties (1)-(2) can be evaluated for fixed values
of the parameters interArrivalTime (i.e., the request inter-
arrival time) and switchToSleepProbability (i.e., the proba-
bility for the service provider to be transitioned into the low-
power sleep state when it is idle). Alternatively, a PRISM
experiment can be run to analyse these properties for a fam-
ily of CTMCs whose members correspond to different val-
ues of the two parameters—Fig. 4. The autonomic manager
introduced in this paper uses such PRISM experiments to
analyse the current state of the managed IT components,
and to plan changes in their configurable parameters that
fulfil the user-specified policies for the system (cf. Fig. 1).

Our choice of PRISM for this role is due to its proven
ability to analyse real-world systems that spawn a spectrum
of application domains ranging from communication proto-
cols and security systems to biological systems and system
dependability [17, 18]. An extensive, independent perfor-
mance analysis of a range of probabilistic model checkers
[13] ranked PRISM as the best tool for the quantitative anal-
ysis of large models such as the ones encountered in the
autonomic systems targeted by our work.

Autonomic computing policies Several types of policies
are used in autonomic systems [30, 31]:

Figure 5. Utility function for the disk drive

• action policies provide a low-level specification of how
the system configuration (i.e., the set of system param-
eters that can be modified by the autonomic manager)
should be changed to match its state (i.e., the set of sys-
tem parameters that can be read but not modified);

• goal policies specify precise constraints that the auto-
nomic manager should meet;

• utility policies supply a “measure of success” that the
autonomic system should optimise.

The use of runtime quantitative analysis within our frame-
work enhances most the effectiveness of utility policies,
which represent the most flexible of these policy types
[5, 30]. For this reason, the remainder of the paper will
concentrate on our implementation of utility policies. Nev-
ertheless, the policy engine used by the framework supports
all policy types [3].

To illustrate the specification of utility policies, and with-
out loss of generality, we will consider policies requiring the
optimisation of multi-objective utility functions of the form:

utility =
n∑

i=1

wi objectivei, (3)

where the weights wi ≥ 0, 1 ≤ i ≤ n are used to express
the trade-off among the n > 0 system objectives. Each
objective function objectivei, 1 ≤ i ≤ n is an analytical
expression of the system state and configuration.

Fig. 5 depicts two such objective functions for the disk
drive system described earlier in this section, and their com-
bination into a multi-objective utility function. The analyti-

cal form of the utility function is:

utility = w1 min
(
1,max

(
0, u1−queueLength

u1−l1

))
+

w2 min
(

1,max
(

0,
u2 − power

u2 − l2

))
, (4)

where the lower bounds li and the upper bounds ui from
the two objective functions partition the value domains of
queueLength (for i = 1) and power (for i = 2) into three
regions: optimal—for values less than li; suboptimal—for
values in [li, ui]; and zero-utility—for values larger than ui.
This utility function can express a wide range of trade-offs
between the power usage and the response time of the disk
drive by adjusting the weights w1 and w2.1

Policy engine The monitor-analyse-plan-execute loop
within the autonomic manager in Fig. 1 is implemented by
the generic policy engine that we introduced in [2, 3], and
which we now extend to use runtime quantitative analysis
for the implementation of utility policies.

As described in [3], the policy engine can manage IT
components whose specification is supplied to the engine
as part of a runtime configuration step. This specification—
termed a system model—defines the characteristics of ev-
ery parameter of the IT components in the system, includ-
ing its name, type (e.g., state or configuration) and
value domain (e.g., integer, double or string). Sys-
tem models are represented as XML documents that are in-
stances of a pre-defined meta-model encoded as an XML
schema, and introduced in [2, 3]. This choice was moti-
vated by the availability of numerous off-the-shelf tools for
the manipulation of XML documents and XML schemas—
a characteristic largely lacking for the other technologies
we considered. The policy engine is implemented as a .NET
web service and takes advantage of object-oriented technol-
ogy features such as polymorphism, reflection and generics
in its handling of IT components whose characteristics are
unknown until runtime.

3. Generic Method for the Development
of Autonomic IT Systems

Our method for developing autonomic IT systems
(Fig. 6) comprises three stages that correspond to the sets
of steps to be performed by three different user roles:2

1) the manageability adaptor required to organise an exist-
ing IT system into an autonomic system is devised by
the system developer during the generation stage;

2) in the deployment stage, this adaptor is deployed, and the
policy engine is configured by the system administrator;

1The response time of the disk drive is provably proportional to the
average length of the request queue [25].

2The same person may be responsible for two or all of these roles.

Figure 6. Autonomic system development

3) policies expressing the high-level system objectives are
specified by the end user in the exploitation stage.

These stages are described below, and applied to the devel-
opment of an autonomic DPM solution for the disk drive in-
troduced in the previous section. The goal of the autonomic
system developed in this running example is to ensure that
the power manager from Fig. 2 adapts its decisions dynam-
ically to changes in (a) the system workload; and (b) the
user-specified utility policy for the DPM disk drive.

3.1. Generation

The first stage of the method starts from a PRISM-
encoded Markov chain describing the behaviour of the IT
component(s) to be included in the autonomic system. This
Markov chain may be available already from the develop-
ment and/or verification of the IT component(s), or can be
built as described in [17, 18]. For our example, we use the
CTMC of a Fujitsu disk drive shown in Fig. 3.
Step G1 In the first generation step, the Markov chain is
used to derive an XML model for the configuration of the
policy engine. The step is described by the mapping

modelTransformation : MarkovChain → System, (5)

where MarkovChain and System represent the set of Markov
chains accepted by PRISM and the set of models used to
configure the policy engine from [3], respectively. This re-
quires the identification of the parameters of the IT compo-
nents from the Markov chain by means of two rules:

1) Uninitialised const identifiers from the PRISM-encoded
Markov chain (cf. Fig. 3) represent state or configura-
tion parameters of the modelled IT component.

2) PRISM reward constructs represent parameters derived
from the values of the other component parameters.

A basic understanding of the semantics of the Markov chain
is needed to distinguish between state and configuration pa-
rameters. Therefore, this transformation cannot be fully
automated, but is performed in a computer-assisted fash-
ion: the prototype model transformation tool that we imple-
mented requires the system developer to specify the type of
these parameters, and generates the other elements of the
system model (including the value domain of each parame-
ter) automatically.

As shown in Fig. 3, the disk drive from our running ex-
ample has four parameters:

• interArrivalTime represents the double-valued request
inter-arrival time, and is therefore a parameter associated
with the system state.

• switchToSleepProbability ∈ [0, 1] is a configuration pa-
rameter that specifies the probability for the service
provider to be transitioned into the low-power sleep state
when it is idle.

• power and queueLength are two double-valued de-
rived parameters.

In addition to these parameters, the generated model is aug-
mented automatically with a string-valued parameter id
that is used to distinguish between different instances of the
modelled IT component, and a behaviouralModel parame-
ter whose (string) value is the Markov chain itself.
Step G2 In this step, a standard XSLT engine (e.g., Saxon
[27] in our prototype toolset) is used to apply a simple XSL
transformation to the XML system model, and thus to auto-
matically extract an XML schema specification for the tar-
geted IT component(s):

schemaGen : System → XmlSchema. (6)

The result of this step for our running example is shown
in Fig. 7. Note that for each derived component parameter
with identifier x, a string-valued element xDefinition is
automatically included in the XML complexType for the
component (e.g., powerDefinition and queueLengthDefini-
tion for the disk drive XML schema in Fig. 7). These ele-
ments are used to store the PRISM temporal logic properties
that the policy engine will use to calculate the value of the
derived component parameters at runtime.
Step G3 A standard data type generator (we use the XML
Schema Definition tool [20]) is employed to generate the set
of data types associated with the XML schema:

dataTypeGen : XmlSchema → P DataType. (7)

This is a set of .NET classes in our framework.
Step G4 Finally, a simple transformation was implemented
to automate the generation of manageability adaptor stubs
for the components in the IT system:

adaptorGen : XmlSchema → P ManageabilityAdaptor. (8)

Figure 7. Generated XML schema (Step G2)

Figure 8. Class diagram for Steps G3–G4

As shown in Fig. 8 for our sample system, the manage-
ability adaptors subclass a generic abstract web service
ComponentAdaptor<T>. This base class implements the
bulk of the sensor and effector functionality associated
with a manageability adaptor, hence only a small number
of simple, component-specific methods that are declared
abstract in this base class need to be implemented man-
ually in these stubs as described in [3]. Implementing these
methods for our system consisted in writing the code to get
and set the disk-drive parameters from a discrete-event sim-
ulator that we developed to assess the effectiveness of the
framework. Additionally, the powerDefinition and queue-
LengthDefinition fields of diskDrive objects were set to
represent the PRISM properties (1)-(2).

3.2. Deployment

Step D1 In the first deployment step, the XML system
model from Step G1 is supplied to the running instance of
the policy engine that will be used in the autonomic system.
Given the implementation of the engine as a web service,
this involves the invocation of one of its web methods. To
achieve this for our sample system, we uploaded the model
using the web client implemented and described in [3].

When a system model is used to configure the policy en-

gine, new data types and manageability adaptor proxies are
generated within the engine to enable it to interoperate with
the manageability adaptors for the component types speci-
fied in the system model. This fully automated code gener-
ation process is described in [3].
Step D2 The second development step consists of setting
up the manageability adaptors built during the generation
stage, and connecting them to the actual IT components
to be included in the system. The first part of the oper-
ation represents a standard deployment of a web service,
whereas the second part depends on the interface between
the adaptor and the system components, but it typically in-
volves configuring the two elements so that they know each
other’s address. For the system used in our running exam-
ple, the URL of the discrete-event simulator was provided
as a configuration parameter to the manageability adaptor.

3.3. Exploitation

Step E1 In this step, user-specified policies that express
the objectives of the system as functions of its parameters
are devised and supplied to the policy engine, e.g., by us-
ing the web client that was employed to upload the system
model in Step D1. Typically, these policies are modified
over time to reflect changes in the system goals. Depending
on the configuration of the policy engine, the policies are
evaluated and implemented either periodically or when the
engine receives notifications about changes in the values of
the system parameters from the manageability adaptors.

The policy handling techniques employed by the policy
engine version that did not support quantitative analysis are
described in [3]. In this section, we describe for the first
time how the extended version of the policy engine is han-
dling utility policies that rely on the use of runtime quanti-
tative analysis. This will be done for the utility policy:

MAXIMISE(scope, utility, configParam, min, max, step, mc)
(9)

that uses the knowledge encoded in the Markov chain mc to
set the value of the configuration parameter configParam
for each IT component within the scope of the policy.
Runtime quantitative analysis is employed to examine all
configParam values that are step units apart between min
and max, and to select a value that maximises a multi-
objective utility function with the form in (3).

The arguments in (9) are expressions that evaluate to a
set of IT components (scope), a numerical value (utility,
min, max and step) and the string-valued name of a com-
ponent property (configParam and mc), respectively. For
instance, the policy used for our running example is

MAXIMISE(’TYPE(.) = "diskDrive"’, utility,

"switchToSleepProbability",

MAXIMISE(scope, utility, configParam, min, max, step, mc)
foreach c ∈ scope do

markov = INVOKE(c, GETMETHOD(PARAMETER(c, mc)), {})
propertyList = "", constList = ""
foreach p ∈ SYSTEMMODEL(TYPE(c)).parameters do

if p.type = "derived" then
propertyList += INVOKE(c, GETMETHOD(

PARAMETER(c, p.ID + "Definition")), {}) + ’ ’
else if p.ID 6= configParam & p.ID 6= mc then

constList += p.ID + ’=’ +
INVOKE(c, GETMETHOD(PARAMETER(c, p.ID)), {}) + ’,’

constList += configParam + ’=’+ min + ’:’+ max + ’:’+ step
prismResults = RUN("prism", markov, propertyList, constList)
find result ∈ prismResults such that

EVAL(utility, c |result)=maxx∈prismResults EVAL(utility, c |x)
INVOKE(c, SETMETHOD(PARAMETER(c, configParam)),

{result[configParam]})

1
2
3
4
5
6

7
8

9
10
11

12

Figure 9. Implementation of the utility pol-
icy (9) using runtime quantitative analysis

0, 1, 0.05,"behaviouralModel"), (10)

where the utility function to optimise is given by (4).
Note that when the choice of step is such that the

Markov chains corresponding to all possible configParam
values are analysed, the optimal value will be identified
and used at all times. When this is not feasible (e.g., for
the switchToSleepProbability disk-drive parame-
ter in (10)), the analysis may be impacted by local max-
ima. Offline quantitative analysis of the underlying Markov
chain is then required to confirm the absence of local max-
ima and/or to choose the step parameter of policy (9) such
that the resulting policy is effective. For our autonomic
DPM system, the latter was made possible by the analysis
available from [24, 25] and led to the choice of step = 0.05.

The algorithm used to implement policy (9) within our
policy engine is described by the pseudocode for the MAX-
IMISE function in Fig. 9. As policy (9) is local to each com-
ponent in scope,3 the top-level foreach loop starting in line
1 implements the policy for each such component c in turn.

First, lines 2–9 of the algorithm synthesise the three
parameters required to run the command-line version of
the PRISM tool for component c: the Markov chain to
analyse (markov); the quantitative properties to evaluate
(propertyList); and the value ranges for the PRISM parame-
ters in the Markov chain (constList). In line 2, reflection4 is
used to obtain and invoke the Getmethod for the parameter
of c whose name is provided as the mc argument of MAX-
IMISE. The result is stored as a string in markov. The
foreach loop in lines 4–8 uses the TYPE operator to find
out the type of c, looks up this component type in the SYS-
TEMMODEL supplied to the policy engine in the deploy-
ment step D1, and examines each of the component param-
eters. Component parameters of type ‘derived’ correspond

3A global policy is shown in Sect. 4.2.
4In object-oriented programming, reflection is a technique that enables

programs to discover, create and manipulate classes and objects starting
from their metadata [28].

to reward constructs in the PRISM-encoded Markov chain
(cf. Fig. 3), and the definitions of their associated temporal-
logic properties are concatenated into propertyList (lines 5–
6). The values of all other component parameters (except
configParam and mc) are used to synthesise the comma-
separated list of PRISM parameter values constList in lines
7–8. The PRISM encoding of the configParam values to
be analysed (i.e., “configParam=min:max:step”) is then ap-
pended to the resulting constList in line 9.

The PRISM experiment is run in line 10, and the re-
sults of this runtime quantitative analysis are parsed into
an

(
bmax−min

step c+ 1
)

-element array prismResults. For each
analysed configParam value xi = min + i · step, 0 ≤
i ≤ bmax−min

step c, prismResult[i] is a dictionary that maps
configParam to xi, and the name of each ‘derived’ param-
eter of c (e.g., "power" and "queueLength" for a
diskDrive component) to the value that the parameter
would take if configParam = xi.

In line 11, the utility function is evaluated for the con-
sidered values of configParam. For each dictionary x ∈
prismResult, the parameters of c that x maps to values are
set to these values, and utility is calculated for the resulting
object c |x using an auxiliary function EVAL. One of the
prismResult elements that maximise utility is chosen as the
analysis result, and used in line 12 to set the value of the
configParam field of c. On exit from MAXIMISE, the new
configParam values for the IT components in scope will be
enforced using the appropriate manageability adaptors, as
described in [3].

The outermost loop starting in line 1 is performed
#scope times. Lines 2–3 take constant time, and so does
the foreach loop in lines 4–8 because an IT component has
a constant number of parameters to examine and handle.
Line 9 takes constant time, while running PRISM to anal-
yse a temporal logic property takes tPRISM > 0 time units.
A detailed analysis of tPRISM is available in [17]; here, we
will just state that tPRISM is linear in the size of the anal-
ysed property, and quadratic in the state size of the analysed
Markov chain. Evaluating utility for a single configParam
value in line 11 takes constant time, hence choosing a value
that maximises utility will take O(max−min

step) time. Finally,
setting the value of configParam in line 12 takes constant
time. The overall complexity of the algorithm is therefore
O

(
#scope

(
tPRISM + max−min

step

))
—linear in the number of

IT components to which autonomic capabilities are added,
in the time taken to analyse the Markov chain using PRISM,
and in the number of analysed configParam values.

Step E2 The policy engine detects automatically all man-
ageable IT components that have been registered with its
component discovery service, and whose types are speci-
fied in the system model used for its configuration.

4. Case Studies

4.1. Dynamic Power Management

We start our presentation of case studies with the ex-
perimental results for the autonomic DPM system from
Sect. 3. A discrete-event simulator was implemented to
evaluate policy (10) for a simulated disk drive handling
requests with exponentially distributed inter-arrival time.
Each experiment was for a one-hour period in simulated
time. The mean request inter-arrival time was varied in the
range 200ms to 2000ms in each experiment, and the pa-
rameters wi, li, ui, 1 ≤ i ≤ 2 from (4) were varied across
experiments. This allowed us to assess the ability of the sys-
tem to adapt to changes in its workload and objectives, re-
spectively. Additionally, two standard DPM methods were
also applied to each of the experimental data sets in order
to contrast the autonomic DPM method with existing DPM
techniques. The two standard DPM methods selected were
([25]): the timeout method, which moves the disk drive into
the sleep state after a period of idleness t and “awakens” it
immediately after a request has arrived; and the N method,
which moves the disk drive into the sleep state as soon as it
becomes idle, and “awakens” it after N requests accumulate
in its queue.

The experimental results are summarised in Fig. 10.
The graphs contrast the average actual utility achieved by
our autonomic disk drive with the average actual utilities
achieved by the timestamp and N methods. For the times-
tamp method, different experiments were run for each con-
sidered disk drive workload, and for each 500ms-apart value
of t in [0, 10s]. The results shown in Fig. 10 correspond to
the choice of t yielding the highest average actual utility, so
that the autonomic method is compared with the best possi-
ble instance of the timestamp method. Likewise, N-method
experiments were run for all 0 ≤ N ≤ 10, and the best result
is represented in the graphs. The actual utilities are shown
as a percentage of the maximum value of the utility func-
tion (4) (i.e., w1+w2), for multiple values of the w1/w2 ratio
between the weights of the power-related and performance-
related terms of the utility function. The chosen w1/w2 ra-
tios cover a broad range of power/performance trade-offs,
(i.e, w1/w2 ∈ {0.1, 0.2, . . . , 1.0, 2.0, . . . , 10.0}), and are
represented on the horizontal axes using logarithmic scale.

Each graph corresponds to a different combination of the
li, ui parameters of the utility function (4), 1 ≤ i ≤ 2. For
the top row of three graphs, the performance-related util-
ity parameters are fixed at relatively demanding values (i.e.,
l1 = 8 and u1 = 9), and the power-related requirements
are relaxed from left to right (cf. Eq. (4) and Fig. 5). The
graphs in the bottom row correspond to much more relaxed
performance requirements (i.e., l1 = 18 and u1 = 20), and
to the same power-related parameters l2, u2 as the top row.

Figure 10. Experimental results for the DPM disk drive

Note that a straightforward way to enable users with lim-
ited IT expertise to select an effective policy instance for
their needs is to present them with a graphical user interface
(GUI) comprising a “power/performance trade-off ” slider
GUI control that adjusts the w1/w2 ratio, and a radio-button
GUI control for selecting a family of policy instances such
as the ones corresponding to the six graphs in Fig. 10.

The experimental results show that the autonomic disk
drive achieves better utility than the timeout and N meth-
ods across a broad range of performance/power trade-offs.
For all experiments, the autonomic DPM method betters the
other methods by a wider margin for small to medium val-
ues of w1/w2, i.e., when the power-related term of (4) has
a major contribution to the overall utility. In these areas of
the graphs, the autonomic DPM method adjusts the config-
uration of the disk drive to its workload in ways that are not
accessible to the timeout and N heuristics for any consid-
ered value of their parameters t and N, respectively.

For large values of w1/w2, the three DPM methods
achieve similar actual utility. The explanation is that for
these w1/w2 ratios the power-related term of the utility
function (4) is dwarfed by the performance-related term,
and both standard methods can maximise the performance-
related term for certain values of their parameters. These
values are t = 10s for the timeout method (i.e., the disk
drive is almost never moved into the sleep state), and N = 0

for the N method (i.e., an idle disk drive wakes up as soon
as a request enters its queue). Hence, DPM is of limited
use when the utility function is nearly independent of the
power usage; in this case, the utility value can be optimised
by simply maintaining the disk drive active at all times.

The policy evaluations were done at regular, 10-second
time intervals. For our simple CTMC, the execution of the
algorithm in Fig. 9 took sub-second time on a 3GHz dual-
core AMD-processor desktop running Windows XP. The
average CPU overhead was in the range 1.5%-2.5%, and
techniques for decreasing it are discussed in Sect. 6.

As a final remark, note that when applied to hardware IT
components such as disk drives, our method provides func-
tionality similar to that of automatic control applications.
What distinguishes our method from these applications is
the ability to reconfigure the policy engine at its core for use
across application domains, and its model-driven approach
to IT component management using autonomic policies to
express the high-level system objectives.

4.2. Cluster Availability Management

The second case study involves the adaptive control of
cluster availability within a data centre. The objective of
this application is to control the number of servers allocated
to the N ≥ 1 clusters of a data centre in order to maximise

Figure 11. N-server dependable cluster [10]

the utility function

utility =

N∑
i=1

wi · GOAL(availabilityi ≥ li)− w0

N∑
i=1

serversi

(11)

subject to

N∑
i=1

serversi ≤ Total servers and requiredi ≤ serversi, (12)

where wi > 0, availabilityi ∈ [0, 1], li ∈ [0, 1], requiredi ≥
1 and serversi ≥ 1 represent the priority, expected avail-
ability, target availability, number of required servers, and
number of (allocated) servers for cluster i, 1 ≤ i ≤ N, re-
spectively. The parameters wi and li have the same role as
in (4), but we used the operator GOAL(availabilityi ≥ li)
instead of min

(
1,max

(
0, ui−availabilityi

ui−li

))
like in the ob-

jective functions from (4) in order to express the degener-
ate case when ui = li. The GOAL operator yields 1 when
its argument is true and 0 otherwise, Total servers ≥ 1
is the total number of servers in the data centre, and 0 <
w0 � 1 is a constant.5 The expected availability of clus-
ter i, availabilityi, was defined as the expected fraction of a
one-year time period during which at least requiredi servers
are usable (i.e., they are operational, connected to an opera-
tional switch, etc.), assuming that the cluster configuration
does not change.

As the utility function (11) is defined across all clusters
within a data centre, the associated policy is a global pol-
icy. Its implementation is achieved using a variant of the
algorithm in Fig. 9 that combines the per-component results
of the runtime quantitative analysis instead of deciding the
value of serversi, 1 ≤ i ≤ N on a per cluster basis.

Like in the previous case study, we applied the method
introduced in Sect. 3 starting from an existing Markov chain
representation of the targeted IT component, i.e., the CTMC
of a dependable cluster of workstations introduced in [10].
This CTMC takes into account the failure and repair rates
of all components from our targeted cluster architecture—
shown in Fig. 11. Consequently, the policy engine can use

5The second term of (11) ensures that when multiple configurations
maximise the first sum, the configuration using the fewest servers is pre-
ferred.

Figure 12. Simulation results for a three-
cluster data centre over a four-week period

PRISM experiments to calculate the expected cluster avail-
abilities for the data-centre configurations that satisfy (12),
and to decide the number of servers that each cluster should
get so that the value of the utility function (11) is max-
imised. Given the complexity of the CTMC behavioural
model, we configured the policy engine to employ the no-
tification mechanism of the cluster manageability adaptor,
and recalculate the server allocations only when the system
state changed. With all possible data-centre configurations
analysed by the PRISM experiments, this calculation took
up to 30 seconds with the policy engine running on the same
desktop PC as before. This response time is acceptable for
our use case because, based on our previous experience with
policy-based data centre management [4], half a minute rep-
resents a small delay compared to the time required to pro-
vision a server when it is allocated to a new cluster.6

The step parameter of policy (9) was set to 1, so that all
possible values of the configuration parameter serversi were
considered during the runtime quantitative analysis, and the

6Sect. 6 suggests techniques for working around the time taken by run-
time quantitative analysis when such delays are not acceptable.

chosen configuration was guaranteed to be optimal. For
this reason, we present only a set of typical experimental
results for this case study (Fig. 12) rather than contrasting
these results with those corresponding to other availability
management techniques. Maximising the three-cluster data
centre utility involves allocating sufficient servers to achieve
the target availability of the highest priority cluster GOLD at
all times. During time intervals when all three clusters re-
quire large numbers of servers, this impacts the ability of
the lower priority clusters SILVER and BRONZE to realise
their target availabilities, and only the required numbers of
servers are allocated to these clusters. The second term of
the utility function (11) ensures that servers are not allocated
to clusters unless this can improve the system utility. Keep-
ing more servers unassigned in this way is advantageous, as
the overhead to provision a spare server for inclusion into
a cluster is significantly lower than the overhead to move it
from one cluster to another.

5. Related Work

A number of other projects have addressed the model-
based development of autonomic systems. In [14], the au-
thors define an autonomic architecture meta-model that ex-
tends IBM’s autonomic computing blueprint [12], and use
a model-driven process to partly automate the generation of
instances of this meta-model. Each instance is a special-
purpose organic computing system that can handle the use
cases defined by the model employed for its generation. Our
framework eliminates the need for the 19-activity genera-
tion process described in [14] by using a generic policy en-
gine that can be dynamically reconfigured to handle any use
cases in which the behaviour of the system components can
be modelled by means of a Markov chain.

Several research projects propose the use of Model-
Driven Architecture (MDA) techniques to develop auto-
nomic computing policies and autonomic systems starting
from high-level behavioural models of the system or of its
components [7, 23, 26]. Two of these approaches [7, 23] are
targeted at bespoke systems whose components already ex-
hibit sophisticated autonomic behaviour, and therefore can-
not be readily extended to handle generic legacy compo-
nents. In contrast, our generic framework can accommo-
date any type of IT component for which a probabilistic
model is available. The preliminary work described in [26]
is closer to our approach in that it advocates the importance
of using MDA techniques in the development of generic au-
tonomic systems; however, the authors do not substantiate
their proposal with any concrete solution, but rather qual-
ify it as an open challenge. Our framework represents an
important first step towards addressing this challenge.

In [11], the authors take a view similar to ours by in-
troducing a paradigm termed model-driven autonomic com-

puting, and explaining that the model-based validation of
self-management decisions represents a more reliable and
flexible approach than the use of pre-set policies. A hier-
archical model of NASA’s Autonomous Nano-Technology
Swarm missions is successfully used in [11] to achieve the
self-managing functionality that these missions depend on,
and thus to illustrate the benefits of the approach. Our work
complements the results in [11] with a new model-based ap-
proach to developing autonomic functionality, and proposes
a generic method that uses existing tools and standards for
the implementation of autonomic systems.

6. Conclusion

Boosted by the development of powerful quantitative
analysis tools [13, 16], the use of probabilistic model check-
ing for the static analysis of the quantitative properties of
real-world systems has become increasingly popular in re-
cent years [17]. In this paper, we extended the use of
Markov chains and quantitative analysis to the development
and runtime operation of autonomic IT systems.

Starting from a PRISM-encoded Markov chain available
from the verification of a legacy IT system or built as de-
scribed in [17, 18], the generic method for the development
of autonomic functionality introduced in the paper uses au-
tomated and computer-assisted techniques to devise a self-
managing version of the original system. The three stages
of the method can be carried out by a system developer with
experience in quantitative analysis using PRISM (the gen-
eration stage); by a system administrator with minimal ex-
perience in web service deployment (deployment); and by a
technically competent user (exploitation).

The paper describes for the first time an extended version
of the policy engine from [3] that uses runtime quantita-
tive analysis to implement powerful user-specified policies
that would have been extremely complicated to express and
support otherwise. The runtime use of quantitative analysis
involves the automated synthesis of the parameters for the
execution of a PRISM experiment [18], including the gener-
ation of appropriate values and value sets for the undefined
constants in the PRISM Markov chain, and the assembly
of the PRISM probabilistic temporal logic properties to be
evaluated. The results of the quantitative analysis are then
automatically interpreted and used to select an appropriate
new configuration for the system, ensuring that it continu-
ally adapts to changes in its environment and in the user-
specified policies.

Runtime quantitative analysis can incur significant over-
heads in terms of both response time and resource (e.g.,
CPU and memory) utilisation. The use of a subscription-
notification mechanism as described in Sect. 4 is one way
to reduce these overheads by avoiding the unnecessary pe-
riodical re-evaluation of policies. Several other options that

we are planning to investigate include: the use of caching
and pre-evaluation techniques to bypass the analysis step
during policy evaluation; performing the quantitative anal-
ysis within the process space of the policy engine; and the
use of a hybrid approach in which a less demanding PRISM
experiment is carried out to produce a close-to-optimal con-
figuration for the autonomic system and a faster technique
is then used to refine this configuration.

Other areas of future work are the development of addi-
tional applications to assess the effectiveness of our frame-
work within new application domains; and the design of
policies supporting an extended set of probabilistic system
properties, along the lines of the results reported in [8]. Fi-
nally, a major challenge for the future is the development of
online machine learning techniques for the synthesis and/or
refinement of a Markov-chain model for an IT system, e.g.,
starting from an approximate behavioural model provided
by its administrator.

Acknowledgement This work was partly supported by
the UK Engineering and Physical Sciences Research Coun-
cil grant EP/F001096/1.

References

[1] A. Aziz et al. Model checking continuous time Markov
chains. ACM Transactions on Computational Logic,
1(1):162–170, 2000.

[2] R. Calinescu. Model-driven autonomic architecture. In
Proc. 4th IEEE Intl. Conf. Autonomic Computing, 2007.

[3] R. Calinescu. Implementation of a generic autonomic frame-
work. In D. Greenwood et al., editor, Proc. 4th Intl. Conf.
Autonomic and Autonomous Systems, pages 124–129, 2008.

[4] R. Calinescu and J. Hill. System providing methodology for
policy-based resource allocation, July 2004. United States
Patent Application no. 10/710322.

[5] R. Das et al. Towards commercialization of utility-based
resource allocation. In Proc. 3rd IEEE Intl. Conf. Autonomic
Computing, pages 287–290, 2006.

[6] S. Ghanbari et al. Adaptive learning of metric correlations
for temperature-aware database provisioning. In Proc. 4th
IEEE Intl. Conf. Autonomic Computing, June 2007.

[7] D. Gracanin et al. Towards a model-driven architecture for
autonomic systems. In Proc. 11th IEEE Intl. Conf. Engi-
neering of Computer-Based Systems, pages 500–505, 2004.

[8] L. Grunske. Specification patterns for probabilistic quality
properties. In Proc. 30th Intl. Conf. Software Engineering,
pages 31–40, 2008.

[9] H. Hansson and B. Jonsson. A logic for reasoning about time
and reliability. Formal Aspects Comp., 6(5):512–535, 1994.

[10] B. Haverkort et al. On the use of model checking techniques
for dependability evaluation. In Proc. 19th IEEE Symp. Re-
liable Distributed Systems, pages 228–237, October 2000.

[11] M. Hinchey et al. Modeling for NASA autonomous nano-
technology swarm missions and model-driven autonomic
computing. In Proc. 21st Intl. Conf. Advanced Networking
and Applications, pages 250–257, 2007.

[12] IBM Corporation. An architectural blueprint
for autonomic computing, 2004. http://www-
03.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf.

[13] D. Jansen et al. How fast and fat is your probabilistic model
checker? An experimental comparison. In K. Yorav, editor,
Hardware and Software: Verification and Testing, volume
4489 of LNCS, pages 69–85. Springer, 2008.

[14] H. Kasinger and B. Bauer. Towards a model-driven software
engineering methodology for organic computing systems. In
Proc. 4th Intl. Conf. Computational Intelligence, pages 141–
146, July 2005.

[15] J. Kephart and D. Chess. The vision of autonomic comput-
ing. IEEE Computer Journal, 36(1):41–50, January 2003.

[16] M. Kwiatkowska. Quantitative verification: Models, tech-
niques and tools. In Proc. 6th Joint Meeting of the European
Software Engineering Conf. and the ACM SIGSOFT Symp.
Foundations of Software Engineering, pages 449–458. ACM
Press, September 2007.

[17] M. Kwiatkowska et al. Stochastic model checking. In
M. Bernardo and J. Hillston, editors, Formal Methods for the
Design of Computer, Communication and Software Systems:
Performance Evaluation, pages 220–270. Springer, 2007.

[18] M. Kwiatkowska et al. Quantitative analysis with the proba-
bilistic model checker PRISM. Electronic Notes in Theoret-
ical Computer Science, 153(2):5–31, 2005.

[19] C. Lefurgy et al. Server-level power control. In Proc. 4th
IEEE Intl. Conf. Autonomic Computing, June 2007.

[20] Microsoft Corporation. XML schema definition tool, 2007.
msdn2.microsoft.com/en-us/library/x6c1kb0s(VS.80).aspx.

[21] R. Murch. Autonomic Computing. IBM Press, 2004.
[22] M. Parashar and S. Hariri. Autonomic Computing: Con-

cepts, Infrastructure & Applications. CRC Press, 2006.
[23] J. Pena et al. A model-driven architecture approach for mod-

eling, specifying and deploying policies in autonomous and
autonomic systems. In Proc. 2nd IEEE Intl. Symp. Depend-
able, Autonomic and Secure Computing, pages 19–30, 2006.

[24] PRISM Case Studies: Dynamic Power Management.
http://www.prismmodelchecker.org/casestudies/power.php.

[25] Q. Qiu et al. Stochastic modeling of a power-managed sys-
tem: construction and optimization. In Proc. Intl. Symp. Low
Power Electronics Design, pp. 194–199. ACM Press, 1999.

[26] M. Rohr et al. Model-driven development of self-managing
software systems. In Proc. 9th Intl. Conf. Model-Driven En-
gineering Languages and Systems. Springer, 2006.

[27] SAXON – The XSLT and XQuery Processor.
http://saxon.sourceforge.net/.

[28] J. Sobel and D. Friedman. An introduction to reflection-
oriented programming. In Proc. Reflection’96. 1996.

[29] R. Sterritt and M. Hinchey. Biologically-inspired concepts
for self-management of complexity. In Proc. 11th IEEE
Intl. Conf. Eng. Complex Computer Systems, pages 163–
168, 2006.

[30] W. Walsh et al. Utility functions in autonomic systems. In
Proc. 1st Intl. Conf. Autonomic Computing, pp. 70–77, 2004.

[31] S. White et al. An architectural approach to autonomic com-
puting. In Proc. 1st IEEE Intl. Conf. Autonomic Computing,
pages 2–9. IEEE Computer Society, 2004.

