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Abstract: We demonstrate how probabilistic model checking, a formal verification
method for the analysis of systems which exhibit stochastic behaviour, can be
applied to the study of dependability properties of software-based control systems.
We provide an overview of these techniques and of the probabilistic model
checking tool PRISM, illustrating the usefulness of the approach through a small
case study. By using existing formalisms and tool support, we show how it is
possible to construct large and complex Markov models from an intuitive high-
level description. Furthermore, we are able to take advantage of the efficient
implementation techniques which have been developed for these tools.
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1. INTRODUCTION

Industrial use of software-based control systems
is now increasingly widespread. Programmable
controllers can be found in domains as diverse as
the manufacturing, transport, energy and power
industries. In many of these cases, the safety and
reliability of the system is a crucial issue. This
fact is evidenced, for example, by the existence,
and indeed prominence, of the IEC 61508 and
ANSI/ISA S84 standards, which include strict
guidelines as to the functional safety of such
systems.

A key feature of these standards is the definition of
Safety Integrity Levels (SILs). To adhere to a par-
ticular SIL, it is necessary to accurately quantify
the probability or rate of all safety-related faults
which can occur in the system under study. Two
common techniques for performing such depend-
ability analysis are reliability block diagrams and
fault tree analysis. Both, however, are relatively
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simplistic. For example, it is often necessary to
assume that the probability of a certain fault
arising is independent of the occurrence of other
failures in the system, whereas in practice, this
may be unrealistic and can lead to inaccuracies in
the analysis.

A more sophisticated approach which resolves this
problem is Markov modelling, where a more accu-
rate, state-based model of the system is derived
and analysed. This does, however, have two dis-
advantages. Firstly, it is more complex for the end-
user to implement. Secondly, the size of model
required to represent a system accurately has a
tendency to increase exponentially. This is a phe-
nomenon often known as the state space explosion
problem. Not only does it make the process more
expensive in terms of the time, computing power
and memory required, it can make the reliability
analysis infeasible.

In this paper, we show how formal verifica-
tion methods can be applied to the problem of
analysing the dependability of controller-based
systems. In particular, we focus on probabilis-



tic model checking, an automatic technique for
checking whether or not probabilistic models sat-
isfy certain specifications. We show how existing
formalisms and tools can be used to specify and
analyse these Markov models. In addition, we
can then make use of the efficient implementation
techniques which have been integrated into these
tools in an attempt to curb the effects of state
space explosion.

2. PROBABILISTIC MODEL CHECKING

Model checking is a successful and well established
technique for formally verifying the correctness of
finite-state systems. In recent years, such methods
have become increasingly prevalent in industry.
Model checking involves the construction of a for-
mal model of the real-life system which is to be
verified. This is usually a labelled state transition
system, which represents all the possible config-
urations which the system can be in and all the
transitions which can occur between them. The
properties of the system to be verified are then
also formally specified, usually as formulas of a
temporal logic, and passed to a model checker,
which automatically determines whether or not
each property is satisfied via a systematic explo-
ration of the model.

An extension of this approach which has seen
a significant amount of development of late is
probabilistic model checking , a technique which
permits automatic formal verification of systems
which exhibit stochastic behaviour. Potential can-
didates for such analysis include randomised al-
gorithms, which use probabilistic choices or elec-
tronic coin flipping, and unreliable or unpre-
dictable processes, such as fault-tolerant systems
or communication networks.

Probabilistic model checking is again based on the
construction and analysis of a formal model of the
system. In this case, the model is enriched with
probabilistic information, typically by labelling
each transition of the model with information
about the likelihood that it will occur. The type
of model which we shall focus upon in this paper
is continuous-time Markov chains (CTMCs). A
CTMC comprises a set of states S and a transition
rate matrix R : S × S → IR≥0. The rate R(s, s′)
defines the delay before which a transition be-
tween states s and s′ is enabled. The delay is sam-
pled from a negative exponential distribution with
parameter equal to this rate, i.e. the probability
of the transition being enabled within t time units
is 1 − e−R(s,s′)·t. When R(s, s′)>0 for two states
s′, a race occurs and the transition which becomes
enabled first is the one taken. Exponentially dis-
tributed delays are often suitable for modelling
component lifetimes and inter-arrival times. Fur-

thermore, they can be used to approximate more
complex probability distributions.

Other models commonly used for probabilistic
model checking are discrete-time Markov chains
(DTMCs), which specify the probability of mov-
ing between states in discrete time-steps, and
Markov decision processes (MDPs), which can
model systems which exhibit both probabilistic
and nondeterministic behaviour, for example a
system which comprises a number of probabilistic
processes operating asynchronously in parallel.

Given a probabilistic model, it is then necessary
to specify its required properties. Traditionally,
in the model checking paradigm, properties are
expressed using temporal logic, which provides a
concise and unambiguous specification. We will
use the temporal logic CSL (Continuous Stochas-
tic Logic) Aziz et al. (1996); Baier et al. (1999)
which is designed for specifying properties of
CTMCs. We do not present the full syntax and
semantics of the logic here, instead providing a
number of illustrative examples with their natural
language translation:

• P≤0.01[3 shutdown] – “shutdown eventually
occurs with probability at most 0.01”

• P≥0.95[¬repair U≤200 complete] – “with prob-
ability 0.95 or greater, the process will suc-
cessfully complete within 200 hours and with-
out requiring any repairs”

• S>0.75[num sensors≥min] “in the long-run,
the probability that an adequate number of
sensors are operational is greater than 0.75”

Note that the use of probability bounds (≤ 0.01,
≥ 0.95, > 0.75) ensures that the properties above
constitute questions which can be verified either
to be true or false, as is traditionally the case in
formal verification. In practice, though, it is often
more useful to request the actual values, writing
for example:

• P=?[3≤T shutdown] – “what is the probabil-
ity that the system shuts down by time T?”

Furthermore, the most useful way to analyse the
model and to gain insights into its reliability may
be to compute and plot such a value as some
parameter is varied (e.g. T in the formula above,
or a constant in the model itself).

Additional properties can be specified by adding
the notion of rewards. We can assign each state
(or transition) of the model a real-valued reward
and then write queries such as:

• R=?[3success] – “what is the expected re-
ward accumulated before the system success-
fully terminates?”

Rewards can be used to specify a wide range of
measures of interest. Of course, conversely, we



Fig. 1. Screenshots of PRISM running

can also consider the rewards to be costs. We
can then analyse, for example, expected power
consumption, expected number of failures, etc.
Suitable temporal logics for expressing cost- and
reward-based properties can be found in e.g. Baier
et al. (2000); de Alfaro (1997).

A probabilistic model checker applies algorith-
mic techniques to analyse the state space of a
probabilistic model and determine whether its
specifications are satisfied. Typically, this involves
computation of one or more probabilities or per-
formance measures. The operations required are
graph-based analysis and methods for solving ei-
ther linear equation systems or linear optimisation
problems.

3. PRISM

PRISM Kwiatkowska et al. (2002) is a proba-
bilistic model checker developed at the University
of Birmingham. It provides automatic verifica-
tion of CSL properties for CTMCs. In addition,
it supports analysis of DTMCs and MDPs. The
tool has been used to analyse a wide range of
case studies, including: randomised algorithms for
problems such as leader election, mutual exclusion
and consensus; real-time communication proto-
cols; security protocols; communication networks;
and dynamic power management schemes.

Probabilistic models to be analysed in PRISM are
specified in the PRISM language, which is based
on the Reactive Modules formalism of Alur and
Henzinger Alur and Henzinger (1999). A model
is described as a number of modules, each of
which corresponds to a component of the real-life
system. Each module has a set of finite-ranged
variables. These determine the possible states of
each module. The whole model is constructed as
the parallel composition of these modules.

The behaviour of an individual module is specified
by a set of guarded commands. For a CTMC, as
is the case here, a command takes the form:

[] <guard> → <rate> : <action> ;

The guard is a predicate over the variables of all
the modules in the model. The update comprises
<rate>, an expression which evaluates to a posi-
tive real number, and <action>, which describes
a transition of the module in terms of how its
variables should be updated. The interpretation of
the command is that if the guard is satisfied, then
the module can make the corresponding transition
with that rate (see Section 2 for a definition of
rate). A simple command for a module with one
variable x might be:

[] (x = 0) → 4.5 : (x′ = x + 1) ;

which states that, if x is 0, it is incremented by
one and this action occurs with rate 4.5.

The overall functionality of the PRISM tool is
as follows. First, it reads and parses a system
description in the PRISM language. It then con-
structs, from this, the corresponding probabilistic
model, in this case a CTMC (although the same
description language can be used for both DTMCs
and MDPs). PRISM also computes the set of all
states which are reachable from the initial state
and identifies any deadlock states (i.e. reachable
states with no outgoing transitions). If required,
the transition matrix of the probabilistic model
constructed can be exported for use in another
tool. Typically, though, PRISM then parses one or
more temporal logic properties (e.g. in CSL) and
performs model checking, determining whether
the model satisfies each property. The graphical
user interface of the tool also allows automatic
construction of graphs to visualise results more
easily. Figure 1 shows two screenshots of the tool
running.

Another important feature of the tool is its
implementation. PRISM is a “symbolic” model
checker, meaning that it has been developed
using data structures base on binary decision
diagrams (BDDs). BDDs are reduced, directed
acyclic graphs which can be very effective for com-
pact storage of models which exhibit structure and
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Fig. 2. The embedded system

regularity (e.g. those which have been specified
in a high-level description language such as the
PRISM language). In practice, this allows con-
struction and analysis of larger models than would
otherwise be possible. It also allows efficient BDD-
based algorithms developed for non-probabilistic
model checking to be easily integrated.

The tool and its source code can be freely down-
loaded under the GNU General Public License
from www.cs.bham.ac.uk/˜dxp/prism. Tool docu-
mentation, relevant research papers, and detailed
information about a wide range of previous case
studies can also be found here. In this paper, we
have made use of a prototype extension of PRISM
which supports model checking of the cost- and
reward-based properties mentioned in the previ-
ous section. These features will be integrated into
the main version in due course.

4. CASE STUDY

To illustrate the applicability of probabilistic
model checking and the PRISM tool to the pro-
cess of dependability analysis, we now present a
small case study. We model an embedded system,
closely based on the one presented in Muppala
et al. (1994), the structure of which is shown in
Figure 2. The system comprises an input processor
(I) which reads and processes data from three
sensors (S1, S2, S3). It is then polled by a main
processor (M) which, in turn, passes instructions
to an output processor (O). This process occurs
cyclically, with the length of the cycle controlled
by a timer in the main processor. The output pro-
cessor takes the instructions it receives and uses
them to control two actuators (A1, A2). Finally,
a bus connects the three processors together. A
concrete example of such a system might be a gas
boiler, where the sensors are thermostats and the
actuators are valves.

Any of the three sensors can fail, but they are used
in triple modular redundancy : the input processor
can determine sufficient information to proceed
provided two of the three are functional. If more
than one becomes unavailable, the processor re-
ports this fact to the main processor and the sys-
tem is shut down. In similar fashion, it is sufficient
for only one of the two actuators to be working,
but if this is not the case, the output processor
tells the main processor to shut the system down.

// a sensor fails on average once a month

const double λs = 1/(30 · 24 · 60 · 60);
module sensors

// number of sensors working

s : [0..3] init 3;
// failure of a single sensor

[] s > 0 → s · λs : (s′ = s− 1);

endmodule

Fig. 3. PRISM code for the sensors

The I/O processors themselves can also fail. This
can be either a permanent fault or a transient
fault. In the latter case, the situation can be
rectified automatically by the processor rebooting
itself. In either case, if the I or O processor is
unavailable and this leads to M being unable
either to read data from I or send instructions
to O, then M is forced to skip the current cycle.
If M detects that the number of consecutive cycles
skipped exceeds a limit, K, then it assumes that
either I or O has failed and shuts the system
down. Unless specified otherwise, we assume a
value of 2 for K. Lastly, the main processor can
also fail, in which case the system is automatically
shut down.

The mean times to failure for a sensor, actuator
and processor are 1 month, 2 months and 1
year, respectively. A transient fault occurs in a
processor once a day on average. The mean times
for a timer cycle to expire and for a processor
reboot to complete are 1 minute and 30 seconds,
respectively. We assume that all these delays are
distributed exponentially; hence the system can
be modelled as a CTMC.

Our PRISM model of the system comprises 6
modules, one for the sensors, one for the actuators,
one for each processor and one for the connecting
bus. In Figure 3, we show the section of the
PRISM language description which models the
sensors. This constitutes a single module sensors
with an integer variable s representing the num-
ber of sensors currently working. The module’s
behaviour is described by one guarded command
which represents the failure of a single sensor. Its
guard “s > 0” states this can occur at any time,
except when all sensors have already failed. The
action (s′ = s− 1) simply decrements the counter
of functioning sensors. The rate of this action is
s ·λs, where λs is the rate for a single sensor and s
is the PRISM variable referred to previously which
denotes the number of active sensors.

In Figure 4, we show a second module which
is the PRISM language description of the input
processor. The module has a single variable i with
range [0..2] which indicates which of the three
possible states the processor is in, i.e. whether it
is working, is recovering from a transient fault, or
has failed. The three guarded commands in the



const double λp = 1/(365 · 24 · 60 · 60);

const double δf = 1/(24 · 60 · 60);
const double δr = 1/30;

module proci

// state: 2=ok, 1=transient fault, 0=failed
i : [0..2] init 2;

// failure of processor

[] i > 0 & s ≥ 2 → λp : (i′ = 0);
// transient fault

[] i = 2 & s ≥ 2 → δf : (i′ = 1);

// reboot after transient fault
[input reboot ] i = 1 → δr : (i′ = 2);

endmodule

Fig. 4. PRISM code for the input processor

module correspond, respectively, to the processor
failing, suffering a transient fault, and rebooting.
The commands themselves are fairly self explana-
tory. Two points of note are as follows. Firstly, the
guards of these commands can refer to variables
from other modules, as evidenced by the use of
s≥ 2. This is because the input processor ceases
to function once it has detected that less than two
sensors are operational. Secondly, the last com-
mand contains an additional label input reboot ,
placed between the square brackets at the start
of the command. This is used for synchronising
actions between modules, i.e. allowing two or more
modules to make transitions simultaneously. Here,
this is used to notify the main processor of the
reboot as soon as it occurs.

The full version of the PRISM code for this case
study is available from the tool website.

5. RESULTS

We have used PRISM to construct the CTMC
representing the embedded system described in
the previous section and to analyse a number of
dependability properties using probabilistic model
checking. First, we consider the probability of
the system shutting itself down. Note that there
are four distinct types of failure which can cause
a shutdown: faults in (1) the sensors (2) the
actuators (3) the input/output processors (4) the
main processor. We can analyse how likely each of
these is to be the cause of the shutdown, as time
passes. We use the CSL property:

• P=?[¬down U≤T fail j ]

where j = 1 . . . 4, refers to one of the four failures
above and down denotes that any of the failures
has occurred, i.e. down = fail1 ∨ fail2 ∨ fail3 ∨
fail4. The atomic propositions which make up the
property would in practice be predicates over the
variables from the PRISM language description.
For example, fail1, the failure of more than one
sensor, is written “s < 2 ∧ i = 2”, meaning that
the number of working sensors has dropped below

2 and the input processor is functioning (and so
can report the failure).

The above property denotes the probability that
failure j is the first to occur. Note that, for ex-
ample, if an actuator fails, the sensors, unaware
of this, will continue to operate and may sub-
sequently fail. Hence, we need to determine the
likelihood of each failure occurring, before any
of the others do. This is a good illustration of
how non-trivial properties can be captured using
temporal logic.

In Figure 5(a), we plot the results of this com-
putation over two ranges of values for T : the
first 24 hours and the first month of operation.
We can see, for example, that while initially the
I/O processors are more likely to cause a system
shutdown, in the long run it is the actuators which
are most unreliable. By omitting the bound ≤ T
from the CSL formula:

• P=?[¬down U fail j ]

we can ask the model checker to compute the
long-run failure probability (i.e. as T →∞). The
results are: (1) 0.6216 (2) 0.0877 (3) 0.0484 (4)
0.2423. Note that these sum to one, i.e. the system
will eventually shut down with probability 1.

Second, we consider a number of cost-based prop-
erties. We classify the states of our model into
three types: “up”, where everything is function-
ing, “shutdown”, where the system has shut down,
and “danger”, where a (possibly transient) failure
has occurred but has yet to cause a shutdown
(e.g. if the I or O processor has failed but the M
processor has yet to detect this). We can reason
about the time spent in each class by assigning
a cost of 1 to those states, 0 to all others, and
then computing the total cumulated reward. We
use the properties:

• R=?[C≤T ]
• R=?[Fdown]

These give us the expected time spent in each
class, up until time T and before the system shuts
down, respectively. We plot the results for the first
value in Figure 5(b), again for two ranges of T :
the first day and the first month of operation. In
the table in Figure 5(c), we give the results of
the second property, as we vary K, the number
of skipped cycles which the main processor waits
before deciding that the input/output processors
have failed. We see that increasing the value of K
increases the expected time until failure, but also
has an adverse effect on the expected time spent
in “danger” states.

Finally, to illustrate a different type of cost struc-
ture, we compute the expected number of proces-
sor reboots which occur over time. This is done
by assigning a cost of 1 to all transitions which
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Fig. 5. Reliability results for the case study obtained using the probabilistic model checker PRISM

constitute a reboot and 0 to all others. The results
are plotted in Figure 5(d).

In the experiments we have presented in this
section, the number of states in the CTMC, which
depends on the parameter K, varied between
2,633 and 7,703. The models were all constructed
in less than second. For the model checking itself,
the time required to compute each value varied
from a few seconds to a few minutes, using a
standard workstation.

6. CONCLUSION

We have illustrated how probabilistic model check-
ing, a formal verification technique which has al-
ready been applied to a wide range of domains
including distributed randomised algorithms, real-
time protocols, security protocols and dynamic
power management, can be used to analyse de-
pendability properties of controller-based sys-
tems. We have used the probabilistic model
checker PRISM whose simple system description
language provides an intuitive way to construct
complex Markov models. For specifying proper-
ties to check, we used temporal logic, which al-
lows us to reason about non-trivial behaviour.
We were also able to make use of the efficiency
improvements which have been developed in this
area. A further advantage of this formal verifica-
tion approach is that it could easily be combined
with more traditional non-probabilistic verifica-
tion processes, which are becoming increasingly
common, particularly in safety-critical areas.

For more detailed information about probabilistic
model checking, PRISM and its application to the
case study described in this paper, see the tool
website: www.cs.bham.ac.uk/˜dxp/prism
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