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ABSTRACT
We describe the first software tool for the verification of
TinyOS 2, MSP430 applications at compile-time. Given as-
sertions upon the state of the sensor node, the tool bound-
edly explores all program executions and returns to the pro-
grammer an error trace leading to any assertion violation.
Besides memory-related errors (out-of-bounds arrays, null-
pointer dereferences), we verify application-specific asser-
tions, including low-level assertions upon the state of the
registers and peripherals.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Sensors; D.2.4
[Software Engineering]: Software/Program Verification—
Model checking ; D.4.5 [Operating Systems]: Reliability—
Verification

General Terms
Reliability, Verification, Languages

Keywords
Sensor networks, TinyOS, Telos, MSP430, software verifica-
tion, model checking, reliability, safety

1. VERIFICATION FOR TINYOS
Reliable sensor software is difficult to program. Inter-

rupt-driven code has unrestricted access to the microcon-
troller’s mapped memory, and a sensor node functions in a
dynamic, error-prone network: the programmer has to ac-
count for context switches to interrupt handlers, and for
(potentially corrupted) network data.

We specialize the state of the art in software verification
for ANSI C to be used for TinyOS on MSP430 [1] platforms
such as TelosB [2]; we instrument TinyOS code with asser-
tions which should hold whenever they are reached, and in-
put the result into a fully-automated verification tool chain
which returns a program trace to an assertion violation.

Thus far, the task of locating programming errors in a
sensor application traditionally was done by:

• debugging by deployment, with blinking LEDs allowing
little visibility into the fault’s cause;
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• runtime recovery tools such as SafeTinyOS [3], with
the disadvantage that, for each error, the deployed ap-
plication has to recover by, e.g., reboot;

• simulation.

The difference between simulation and verification is that,
while simulation unwinds one program trace, and thus may
not detect an undesirable program feature, verification aims
to inspect all executions. We use the bounded form of
verification, which unwinds program loops up to a finite
bound, translates the resulting state machine and any as-
sertions into mathematical models (e.g., Boolean formulas),
and checks whether the conjunction of the program’s for-
mula and an assertion’s negated formula is satisfiable—in
which case, there exists a trace on which the assertion is
violated.

As formal verification is not complete for infinite-state pro-
grams (i.e., cannot unwind and verify the entire state-space),
and doesn’t scale as well, we intend our automated verifica-
tion tool chain not to replace, but to complement runtime
techniques and simulation. However, it statically analyses
real source code, and guarantees to detect all errors up to a
finite depth.

We depict our tool chain in Fig. 1. The nescc compiler
first generates an inlined, MSP430-specific C program (for
deployment, this is intended to be passed to the platform’s
mspgcc compiler [4] to generate a binary). Instead of gener-
ating a binary, this is passed to our own tool, tos2cprover,
which:

• Does a source-to-source transformation to give the pro-
gram high-level C semantics; the memory map is mod-
elled by new global variables; e.g., variable _P5OUT is
now the output register for peripheral port 5.

• Determines from function attributes (e.g. attribute
__attribute((interrupt(14))) for the 12-bit Analog-
to-Digital Converter ADC) which functions are IRQ han-
dlers, then instruments the program so that IRQ calls
are made whenever interrupts are enabled. A partial
order reduction technique is used to reduce the number
of these calls.

The resulting C code is a precise, but high-level model of
the original embedded code, and serves as input to CBMC [5],
a software verification tool for ANSI C from the CProver
suite; this further instruments the code with assertions against
standard errors (e.g., memory violations), and boundedly
unwinds the program’s loops to report violations occurring
within the unwinding limit.



  uint16_t temp;
{
#line 109 
static inline void McuSleepC$McuSleep$sleep(void )

assertion instrumentationassertion instrumentation

  temp = McuSleepC$msp430PowerBits[McuSleepC$powerState] | 0x0008;

  if (McuSleepC$dirty) {
#line 111 

# 104 "/Users/doina/tinyos−2.x/tos/chips/msp430/McuSleepC.nc" 

(application−based) (memory violations, exceptions)

   __asm volatile ("" :  :  : "memory");
  __nesc_disable_interrupt();
}

   __asm volatile ("bis  %0, r2" :  : "m"(temp));

    }
      McuSleepC$computePowerState();   temp = McuSleepC_msp430PowerBits[McuSleepC_powerState] | 0x0008;

{
  uint16_t temp;
  if(McuSleepC_dirty)
  {
    McuSleepC_computePowerState();
  }

  _R2 |= temp;

dereferences

inline static void McuSleepC_McuSleep_sleep( void )  

  __nesc_disable_interrupt();
}

  sig_ADC_VECTOR();illegal−address

tos2cprover

cprover

nescc

(mspgcc)

assertion violations
with program trace

cprover

configurations, wiring
nesC/C modules, MCU−specific

C/asm

(source transformation,

CProver−readable
standard C

IRQ instrumentation)
analysis, and

Figure 1: The verification tool chain

2. BENEFITS AND COSTS
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Figure 2: Verification times for Sense

Our assertions can be either hardware-aware, e.g.

assert(_P5OUT & 0x0008);

or high-level (e.g., asserting upon the value of a variable lo-
cal to a component). Implicit assertions guarding buffer
bounds, pointer use and arithmetic exceptions are intro-
duced by CBMC. E.g., as function pushTask(uint8_t id)
writes upon the task queue:

SchedulerBasicP_m_next[SchedulerBasicP_m_tail]=id;

CBMC will generate the upper-bound assertion:

Claim SchedulerBasicP_pushTask.1:
(unsigned int)SchedulerBasicP_m_tail < 8

For the Sense application in the TinyOS apps repository,
132 memory-violation assertions are thus generated, with
747 for TestDissemination. Their verification runs came up
negative, when unwinding two task scheduler loops and al-
lowing one interrupt per loop.

The verification time sums the program unwinding time
and the decision procedure runtime of the SAT solver on
the program’s formula. Fig. 2 exemplifies the runtimes for
a subset of memory-violation assertions from Sense. The x

axis is labeled with assertion identifiers: e.g., Scheduler-
BasicP_pushTask.1 is the first assertion generated inside
function pushTask from component SchedulerBasicP. Both
runs are configured with one IRQ call per task loop; one run
unwinds one task loop, and another, two. With notable ex-
ceptions for which the runtime explodes, most assertions are
verified in constant time. While we did not discover any new
errors in TinyOS, we were able to inject and detect known
bugs.
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