
QAPL 2005 Preliminary Version

Quantitative analysis with the probabilistic
model checker PRISM 1

Marta Kwiatkowska Gethin Norman David Parker 2

School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

Abstract

Probabilistic model checking is a formal verification technique for establishing the
correctness, performance and reliability of systems which exhibit stochastic be-
haviour. As in conventional verification, a precise mathematical model of a real-life
system is constructed first, and, given formal specifications of one or more properties
of this system, an analysis of these properties is performed. The exploration of the
system model is exhaustive and involves a combination of graph-theoretic algorithms
and numerical methods. In this paper, we give a brief overview of the probabilis-
tic model checker PRISM (www.cs.bham.ac.uk/~dxp/prism) implemented at the
University of Birmingham. PRISM supports a range of probabilistic models and
specification languages based on temporal logic, and has been recently extended
with costs and rewards. We describe our experience with using PRISM to analyse a
number of case studies from a wide range of application domains. We demonstrate
the usefulness of probabilistic model checking techniques in detecting flaws and un-
usual trends, focusing mainly on the quantitative analysis of a range of best, worst
and average-case system characteristics.

Key words: Automatic verification, temporal logic, Markov
models, probabilistic model checking, performability, reliability,
dependability.

1 Introduction

Model checking is an automatic model-based verification approach that ex-
plores all system executions and is therefore more powerful than testing or
simulation-based system analysis techniques. Models can be created manu-
ally using modelling languages tailored to the particular application domain,

1 Supported in part by FORWARD and EPSRC projects GR/S11107 and GR/S46727.
2 {mzk,gxn,dxp}@cs.bham.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

www.cs.bham.ac.uk/~dxp/prism

Kwiatkowska, Norman, Parker

for example a hardware description language, or extracted via abstract inter-
pretation from actual source code in C/C++ or Java. A model checker aims
to establish that the model satisfies a given specification, usually stated in a
variant of temporal logic, or else produce error diagnostics. Since its introduc-
tion in 1980s, model checking has made great advances, becoming a leading
research focus as well as standard industrial practice. When applied as part of
a design process, its ability to detect errors in the designs before manufacture
can improve reliability and reduces production costs both in hardware designs
(e.g. Intel) and software (e.g. SLAM at Microsoft).

The vast majority of research in model checking has concerned discrete
behavioural aspects, such as nondeterminism and concurrency. Recent de-
velopments in technology – the increasing trend for mobile, portable, ubiqui-
tous, adaptive, self-organising systems – have substantially raised the profile of
probabilistic, and more generally quantitative modelling and verification tech-
nologies for software. Features such as real-time and probability are already
utilised in real-world distributed protocols (e.g. Bluetooth, IEEE 802.11). In-
deed, randomisation is key to achieve symmetric distributed solutions, self-
configuring protocols, self-organising systems, fault-tolerant algorithms and
scalable protocols. Probability also plays an important role in modelling un-
certainty, in planning and decision making, and for analysing performance and
dependability.

Probabilistic model checking is a relatively recent development which aims
to deliver automatic verification technology for probabilistic systems. The
theoretical aspects of probabilistic model checking have been studied since first
introduced by Hart, Sharir and Pnueli [18]. As in conventional model checking,
a model of the probabilistic system, usually some variant of a Markov chain, is
built and then subjected to algorithmic analysis in order to establish whether it
satisfies a given specification. The specifications are usually stated as formulae
of probabilistic temporal logic which, in addition to conventional modalities,
may include probabilistic operators whose outcome is true/false depending on
the probability of certain executions. The model checking procedure combines
traversal of the underlying transition graph with numerical solution methods.
The model checker can either produce an answer yes or no, by comparing the
obtained probability with the given threshold, or simply return the likelihood
of the occurrence of executions. For example, suitable correctness properties
for a randomised leader election protocol are “the leader is eventually elected
with probability 1” and “the expected time to leader election is 10 ms”, and
for a multimedia protocol “the probability of a frame being delivered within
5 ms is at least 90%” and “the worst case time to deliver a frame is 1.5 ms”.

Although algorithms for model checking probabilistic systems have been
known since the mid-1980s [53], it is only recently that experimental, tool im-
plementation work has begun. Software tools available for probabilistic model
checking include PRISM [27,45], E T MC2 [20], and Rapture [23]. PRISM,
the internationally leading and widely used Probabilistic model checker, has

2

Kwiatkowska, Norman, Parker

been developed at the University of Birmingham and used to model and anal-
yse over 30 real-world protocols. PRISM provides support for three types of
models and a range of quantitative analysis techniques such as expected time,
average power consumption, and probability of delivery by a deadline. It re-
lies on the use of symbolic model checking technology, employing sophisticated
data structures based on binary decision diagrams (BDDs) [28,34] and efficient
algorithms [34,55]. PRISM combines graph-theoretical analysis with numeri-
cal solution (for exact best/worst case analysis), statistical, simulation-based
methods (for approximate analysis) and parallelisation.

In this paper, we report on our experiences with using PRISM to model
and analyse a range of case studies, from domains as wide-ranging as ran-
domised coordination algorithms and biochemical reactions. We found that
the techniques are expressive enough to analyse properties of genuine inter-
est to protocol designers, and have indeed proved useful through discovering
errors. We demonstrate the usefulness of quantitative analysis against prop-
erties based on temporal logic, but returning quantities computed by model
checking, for example likelihood of termination or average power consumption,
rather than a true/false answer. The advantage of such quantitative analysis
is that the results can be plotted as graphs that can be inspected for trends
and anomalies. We also illustrate the merits of exhaustive probabilistic model
checking over simulation-based techniques. In particular, we are able to com-
pute exact quantities, rather than approximations based on a large number of
simulations, thus enabling to arrive at complete, exhaustive conclusions, e.g.,
computing the best- and worst-case performance for all possible parameter
values, or under any scheduling.

The paper is structured as follows. We begin with a brief introduction
to the topic of probabilistic model checking in Section 2. Then we give an
overview of the PRISM model checker in Section 3, followed by its modelling
language and property specification notation respectively in Sections 4 and 5.
Three case studies, self-stabilisation, dynamic voltage and molecular reactions,
are described in Section 6, and results of their analysis discussed together with
example models and property specifications. We conclude with Section 7.

2 Probabilistic model checking

A probabilistic model checker takes two types of inputs, a probabilistic model
and a property specification. The former is usually described in a high-level
model description language, which is then transformed into an internal rep-
resentation suitable for analysis. The latter is typically based on temporal
logic, enriched with probabilistic operators, and may include additional fea-
tures such as time bounds or costs depending on the model. The model checker
explores the model and produces two types of outputs, either true/false to in-
dicate whether the specification holds in the model, or the numerical value,
for example, the probability or expected time for each state.

3

Kwiatkowska, Norman, Parker

2.1 The Models

The simplest probabilistic models are variants of (discrete space) Markov
chains, and namely discrete-time Markov chains (DTMCs), Markov decision
processes (MDPs) and continuous-time Markov chains (CTMCs). All give rise
to transition systems where the transition relation between states is proba-
bilistic. The models can be endowed with additional information labelling the
states and transitions, for example atomic propositions or costs.

A DTMC is fully probabilistic; it is given as a (finite) set of states S, a
subset of initial states S̄ ⊆ S and a transition probability matrix P : S×S →
[0, 1]. For each pair s, s′ of states, the probability of making a transition from
s to s′ is given by P(s, s′). We require that

∑
s′∈S P(s, s′) = 1 for all states

s ∈ S. Terminating states can be modelled by adding a self-loop, i.e. setting
P(s, s) = 1.

Markov decision processes (MDPs) extend DTMCs by additionally allow-
ing non-deterministic behaviour that is needed, for example, to model asyn-
chronous parallel composition. An MDP is defined by a set of states S, a set
of initial states S̄ ⊆ S and a function Steps which maps each state in S to
finite non-empty set of probability distributions over S. Intuitively, the next
transition from a state s ∈ S is determined by nondeterministically selecting
an element µ of Steps(s) and then choosing a state probabilistically, according
to the distribution µ.

Continuous-time Markov chains (CTMCs), similarly to DTMCs, can model
probabilistic behaviour only, but they allow the modelling of real (continuous)
time, rather than discrete time-steps. Formally, a CTMC is defined by a
set of states S, a set of initial states S̄ ⊆ S and a transition rate matrix
R : S × S → R. This gives the rate R(s, s′) at which transitions occur
between each pair of states s, s′. The probability of moving from s to s′

within t (∈ R>0) time units is described as a negative exponential distribution
1 − e−R(s,s′)t with the rate taken as the parameter. If R(s, s′) > 0 for more
than one state s′, a race between the outgoing transitions from s occurs. This
means that the probability of moving from s to s′ is equal to the probability
that the delay of going from s to s′ “finishes before” the delays of any other
outgoing transition from s.

In models of all three types, a path is a sequence of states, each consecutive
pair of which is connected by a transition, i.e. for which the corresponding
probability or rate is non-zero. A path of a model corresponds to a single run
or execution of the system which the model represents.

2.2 Property specifications

In conventional model checking, the specifications typically aim to ascertain
whether a particular event eventually occurs, possibly with additional quantifi-
cation over paths. In probabilistic model checking, since the transition relation
is probabilistic, we are interested in calculating the probability of events occur-

4

Kwiatkowska, Norman, Parker

ring. This is achieved through extending temporal logics such as CTL or LTL
with a probabilistic operator P ∼ p [·], that can be applied to sets of paths re-
turning their likelihood. This operator has a probability bound (p ∈ [0, 1]) and
a relational operator (∼∈ {<,≤,≥, >}). Comparing the resulting probability
of the specified set of paths with the bound p of the enclosing operator yields
a conventional boolean formula. In the case of MDP models, there are two
types of branching, nondeterministic, determined by a scheduler, and proba-
bilistic, governed by the probability distribution. This must be reflected in the
interpretation of properties, which must be of the form ‘under any scheduling
of processes, yielding the minimum/maximum over all the possible ways of
resolving nondeterminism instead of the exact probability.

The specification notations also take into account additional decorations in
the model, for example real-valued time and costs and rewards. Real-valued
time bounds are allowed to reason about CTMCs (the logic CSL), and the
logics are further enhanced with additional expectation operators.

2.3 Probabilistic analysis methods

Once a probabilistic model has been built, it can be subjected to various
types of analysis. Conventional model checking methods focus on the under-
lying transition graph, allowing for reachability analysis and temporal logic
model checking. On the other hand, conventional probabilistic analysis uses
simulation or analytical solution methods to obtain performance and quality
of service estimates, typically represented as functions of system parameters.
Probabilistic model checking combines probabilistic analysis and conventional
reachability in a single tool. In comparison with simulation, its advantage is
full coverage of the executions and therefore exact answers, and in contrast
with analytical approaches a more detailed analysis, especially the ‘corner
cases’, is often possible. The drawback is the state-space explosion, which
can be addressed through statistical, simulation-based methods at a cost of
approximate answers.

Probabilistic model checking algorithm proceed through a combination of
graph-traversal and numerical computation. Qualitative probabilistic model
checking, i.e. the case of probability bounds being 0 or 1, involves only graph
traversal. For quantitative model checking, the core component is numerical
solution of linear equation systems and linear optimisation problems. For
a detailed introduction to the field of probabilistic model checking see, for
example, [46,4].

3 The PRISM model checker

We now give a high-level overview of the functionality of the PRISM model
checker.

5

Kwiatkowska, Norman, Parker

3.1 Tool overview

PRISM [27,45] is a probabilistic model checker developed at the University
of Birmingham. It accepts probabilistic models described in its modelling
language, a simple, high-level state-based language. Three types of proba-
bilistic models are supported directly; these are discrete-time Markov chains
(DTMCs), Markov decision processes (MDPs), and continuous-time Markov
chains (CTMCs). Additionally, probabilistic timed automata (PTAs) are par-
tially supported, with the subset of diagonal-free PTAs with digital clocks
supported directly [29].

The property specification language of PRISM is based on two existing
temporal logics. PCTL [17,8] is the probabilistic computation tree logic, an
extension of CTL with the probabilistic operator, which is appropriate for the
discrete-time models (DTMCs and MDPs). For CTMCs, CSL [2,5] (continu-
ous stochastic logic) is supported; it also includes the probabilistic operator
but additionally allows real-valued time bounds to be expressed. Probabilis-
tic timed automata have a logic PTCTL, an extension of TCTL, a subset of
which is supported via connection to Kronos [12].

A simplified version of the overall structure of the tool is shown in Figure 1.

CTMC

DTMC

MDP

CSL
Formulas

Properties

File

Description

CSL

Model Checker

Formulas

System

Model Checker

PCTL

Results

PCTL

PRISM

Fig. 1. The structure of PRISM

PRISM first parses the model description and constructs an internal rep-
resentation of the probabilistic model, computing the reachable state space of
the model and discarding any unreachable states. This represents the set of
all feasible configurations which can arise in the modelled system.

Next, the specification is parsed and appropriate model checking algo-
rithms are performed on the model by induction over syntax. In some cases,
such as for properties which include a probability bound, PRISM will simply
report a true/false outcome, indicating whether or not each property is satis-
fied by the current model. More often, however, properties return quantitative
results and PRISM reports, for example, the actual probability of a certain
event occurring in the model. Furthermore, PRISM supports the notion of ex-

6

Kwiatkowska, Norman, Parker

Fig. 2. A screenshot of the PRISM graphical user interface

periments, which is a way of automating multiple instances of model checking.
This allows the user to easily obtain the outcome of one or more properties
as functions of model and property parameters. The resulting table of values
can either be viewed directly, exported for use in an external application such
as a spreadsheet, or plotted as a graph. For the latter, PRISM incorporates
substantial graph-plotting functionality. This is often a very useful way of
identifying interesting patterns or trends in the behaviour of a system. The
reader is invited to consult the “Case Studies” section of the PRISM website
[45] for many examples of this kind of analysis.

Figure 2 shows a screenshot of the PRISM graphical user interface, illus-
trating the results of a model checking experiment being plotted on a graph.
The tool also features a built-in text-editor for the PRISM language. Alter-
natively, all model checking functionality is also available in a command-line
version of the tool. PRISM is a free, open source application. It presently
operates on Linux, Unix, Windows and Macintosh operating systems. Both
binary and source code versions can be downloaded from the website [45].

3.2 Implementation

One of the most notable features of PRISM is that it is a symbolic model
checker, meaning that its implementation uses data structures based on bi-
nary decision diagrams (BDDs). These provide compact representations and
efficient manipulation of large, structured probabilistic models by exploiting
regularity that is often present in those models because they are described
in a structured, high-level modelling language. More specifically, since we
need to store numerical values, PRISM uses multi-terminal binary decision
diagrams (MTBDDs) [11,3] and a number of variants [28,43,34] developed to
improve the efficiency of probabilistic analysis which involve combinations of
symbolic data structures such as MTBDDs and conventional explicit storage
schemes such as sparse matrices and arrays. Since its release in 2001, the
model size capacity and tool efficiency has increased substantially (1010 is fea-

7

Kwiatkowska, Norman, Parker

sible for CTMCs and higher for other types of models). PRISM employs and
builds upon the Colorado University Decision Diagram package [49] by Fabio
Somenzi which implements BDD/MTBDD operations.

The underlying computation in PRISM involves a combination of:

• graph-theoretical algorithms, for reachability analysis, conventional temporal
logic model checking and qualitative probabilistic model checking, and

• numerical computation, for quantitative probabilistic model checking, e.g.
solution of linear equation systems (for DTMCs and CTMCs) and linear
optimisation problems for (MDPs).

Graph-theoretical algorithms are comparable to the operation of a conven-
tional, non-probabilistic model checker and are always performed in PRISM
using BDDs. For numerical computation, PRISM uses iterative methods
rather than direct methods due to the size of the models that need to be
handled. For solution of linear equation systems, it supports a range of well-
known techniques, including the Jacobi, Gauss-Seidel and SOR (successive
over-relaxation) methods. For the linear optimisation problems which arise
in the analysis of MDPs, PRISM uses dynamic programming techniques, in
particular, value iteration. Finally, for transient analysis of CTMCs, PRISM
incorporates another iterative numerical method, uniformisation, which is also
known as randomisation or Jensen’s method.

In fact, for numerical computation, the tool actually provides three distinct
numerical engines . The first is implemented purely in MTBDDs (and BDDs);
the second uses sparse matrices; and the third is a hybrid, using a combination
of the two. Performance (time and space) of the tool may vary depending
on the choice of the engine. Typically the sparse engine is quicker than its
MTBDD counterpart, but requires more memory. The hybrid engine aims to
provide a compromise, providing faster computation than pure MTBDDs but
using less memory than sparse matrices (see [28,43]). By default, PRISM uses
the hybrid engine.

4 The PRISM modelling language

The PRISM modelling language is a simple, state-based language based on
the Reactive Modules formalism of Alur and Henzinger [1]. In this section,
we give a brief outline of the language. For a full definition of the language
and its semantics, see [25]. A wide range of examples can be found both in
the “Case Studies” section of the PRISM website [45] and in the distribution
of the tool itself.

4.1 Modules, variables and commands

The fundamental components of the PRISM language are modules and vari-
ables . Variables are typed (integers, reals and booleans are supported) and

8

Kwiatkowska, Norman, Parker

// A coin process

dtmc

const int HEADS = 1;
const int TAILS = 2;

module coin
x : [0..3] init 0;

[] (x = 0) → 0.5 : (x ′ = HEADS) + 0.5 : (x ′ = TAILS);
[] (x > 0) → 1 : (x ′ = x);

endmodule

Fig. 3. The PRISM Language: Example of a Coin

can be local or global. A model is composed of modules which can interact
with each other. A module contains a number of local variables . The values
of these variables at any given time constitute the state of the module. The
global state of the whole model is determined by the local state of all modules,
together with the values of the global variables. The behaviour of each module
is described by a set of commands . A command takes the form:

[] g → λ1 : u1 + . . . + λn : un ;

The guard g is a predicate over all the variables in the model (including
those belonging to other modules). Each update ui describes a transition
which the module can make if the guard is true. A transition is specified by
giving the new values of the variables in the module, possibly as an expression
formed from other variables or constants. The expressions λi are used to assign
probabilistic information to the transitions.

An example of a module is given in Figure 3. It implements an electronic
coin, which will assign HEADS or TAILS to the variable x with probability
0.5 (x′ denotes updated variable) when x is zero, and otherwise it will retain
the previous value of x. In this case, there is only one initial state, but PRISM
allows the specification of a set of initial states, see [25].

The module is a DTMC (keyword dtmc). The other two possibilities are
Markov decision processes and continuous-time Markov chains, keywords mdp
and ctmc respectively. The interpretation of λi varies depending on the model,
i.e. it is a probability for DTMCs and rate for CTMCs. If the guards are
overlapping, say (x > 0) were replaced with (x = 0)&(x > 0), this indicates
(local) nondeterminism, which is illegal within a DTMC but allowed in MDPs.

4.2 Composing modules

The probabilistic model corresponding to a PRISM language description is
constructed as the parallel composition of its modules. In every state of the

9

Kwiatkowska, Norman, Parker

// N-place queue + server

ctmc

const int N = 10;
const double mu = 1/10;
const double lambda = 1/2;
const double gamma = 1/3;

module queue
q : [0..N];

[] q < N → mu : (q ′ = q + 1);
[] q = N → mu : (q ′ = q);
[serve] q > 0 → lambda : (q ′ = q − 1);

endmodule

module server
s : [0..1];

[serve] s = 0 → 1 : (s ′ = 1);
[] s = 1 → gamma : (s ′ = 0);

endmodule

Fig. 4. The PRISM Language: N-place queue and server example

model, there is a set of commands (belonging to any of the modules) which
are enabled, i.e. whose guards are satisfied in that state. The choice between
which command is performed (i.e. the scheduling) depends on the model type.
For a DTMC, the choice is probabilistic, with each enabled command selected
with equal probability; for an MDP, it is nondeterministic; and for CTMCs it
is modelled as a race condition.

PRISM also supports multi-way synchronisation in the style of process
algebras. For synchronisation to take effect, commands are labelled with ac-
tions that are placed between the square brackets. We illustrate this with an
example of a model of an N -place queue of jobs and a server which removes
jobs from the queue and processes them. The PRISM code can be found in
Figure 4.

There are two modules, one modelling the queue and the other the server.
For example, the serve action in this command from Figure 4:

[serve] q > 0 → lambda : (q ′ = q − 1);

is used to force two or more modules to make transitions simultaneously (i.e.
to synchronise). For example, in state (3, 0) (i.e. q = 3 and s = 0), the com-
posed model can move to state (2, 1), synchronising over the serve action. The

10

Kwiatkowska, Norman, Parker

rate of this transition is equal to the product of the two individual rates (in
this case, lambda · 1 = lambda). The product of two rates does not always
meaningfully represent the rate of a synchronised transition. A common tech-
nique, as seen here, is to make one action passive, with rate 1, and one action
active, which actually defines the rate for the synchronised transition. By de-
fault, all modules are combined using the standard CSP parallel composition
(i.e. modules synchronise over all their common actions). In addition, PRISM
supports several other CSP parallel operators (alphabetised parallel, interleav-
ing, etc) and is able to import models written in a subset of the stochastic
process algebra PEPA [21].

4.3 Costs and rewards

PRISM includes support for the specification and analysis of properties based
on costs and rewards . This means that PRISM can be used to reason, for
example, about properties such as “expected time”, “expected number of lost
messages” or “expected power consumption”.

The basic idea is that probabilistic models (of all three types) developed in
PRISM can be augmented with costs or rewards: real values associated with
certain states or transitions of the model (costs are generally perceived to be
“bad” and rewards to be “good” but, numerically, the two are identical).

Rewards are associated with models using the rewards...endrewards con-
struct. State rewards can be specified using multiple reward items, each of the
form “guard : reward ;”, where guard is a predicate (over all the variables of
the model) and reward is an expression (containing any variables, constants,
etc. from the model). For example:

rewards
x = 0 : 100;
x > 0 & x < 10 : 2 ∗ x ;
x = 10 : 100;

endrewards

assigns a reward of 100 to states satisfying x = 0 or x = 10 and a reward of
2 ∗ x to states satisfying x > 0 & x < 10. Note that a single reward item can
assign different rewards to different states, depending on the values of model
variables in each one. Any states which do not satisfy the guard of any reward
item will have no reward assigned to them. For states which satisfy multiple
guards, the reward assigned to the state is the sum of the rewards for all the
corresponding reward items.

Rewards can also be assigned to transitions of a model, which are specified
in a similar fashion, see [25].

11

Kwiatkowska, Norman, Parker

5 Property specifications

Properties of PRISM models are expressed in a language based on the logics
PCTL (for DTMCs and MDPs) and CSL (for CTMCs), probabilistic exten-
sions of the classical temporal logic CTL originally introduced in [17,8] (PCTL)
and [2,5] (CSL). PRISM supports numerous additional customisations and ex-
tensions of these two logics; for full details see [25].

As an illustration, we list some typical examples of properties which PRISM
can handle, giving both the PRISM syntax with respect to presumed atomic
propositions (e.g. elected , init) and a natural language translation:

• P ≥ 1 [true U elected]
“the algorithm eventually elects a leader with probability 1”

• init ⇒ P < 0.1 [true U≤100 num errors > 5]
“from an initial state, the probability that more than 5 errors occur within
the first 100 time units is less than 0.1”

• down ⇒ P > 0.75 [!fail U[1, 2] up]
“when a shutdown occurs, the probability of system recovery being com-
pleted in between 1 and 2 hours without further failures occurring is greater
than 0.75”

• S < 0.01 [num routers < min routers]
“in the long-run, the probability that an inadequate number of routers are
operational is less than 0.01”

The satisfaction of a property (i.e. whether it is true or false) is defined for
a single state of a model. When analysing a property, PRISM considers it to
be true if it is satisfied in all states of the model, and false otherwise. As in
the second example above, properties can be prefixed with an implication to
check satisfaction in a certain subset of model states.

The two principal operators in PRISM’s property specification language
are the P (probabilistic) and S (steady-state) operators. By default, in both
cases, these operators include a probability bound (≥ 1, < 0.1, > 0.75 and
< 0.01 in the examples above). Informally, a property using the probabilistic
operator, such as P>0.75 [pathprop], is true in a state s of a DTMC, MDP
or CTMC if “the probability that path property pathprop is satisfied by the
paths from state s is greater than 0.75”.

PRISM supports path properties constructed from three temporal opera-
tors: X (“next”), U (“until”), and Utime (“bounded until”). The first, X a, is
satisfied if a is true in the next state. The second, a U b, is satisfied if b is
eventually true and a is true up until that point. One common usage of this
type of property is the case where a is true (as in several of the examples
above). The path property true U b means simply that b is eventually true.
The third type, a Utime b, is satisfied if b becomes true within the time inter-
val time and a is true up until that point. For DTMCs and MDPs, where time
proceeds in discrete steps, the time interval time is simply an integer upper

12

Kwiatkowska, Norman, Parker

bound, e.g. U ≤ 10. For CTMCs, which model real (continuous) time, time
can be an arbitrary interval of the reals, as in these examples: ≤ 1.5, ≥ 5.0,
[12.75, 13.25].

For a DTMC, the probability measure of the set of paths from a state s
which satisfy a particular path property of the types discussed above is well-
defined; see e.g. [17]. Similarly, for a CTMC, the probability measure for such
a set of paths can also be defined; see e.g. [5]. For MDPs, however, a proba-
bility measure can only be feasibly defined once all nondeterminism has been
removed. Hence, the actual meaning of the property P bound [pathprop] for
an MDP is taken to be “the probability that path property pathprop is satisfied
by the paths from state s meets the bound bound for all possible resolutions
of nondeterminism”. This means that, for an MDP, properties using the P

operator actually reason about the minimum or maximum probability, over
all possible resolutions of nondeterminism, that a certain type of behaviour
is observed. This depends on the bound attached to the P operator: a lower
bound (> or ≥) relates to minimum probabilities and an upper bound (< or
≤) to maximum probabilities. For more details on this, see e.g. [6].

The steady-state operator S is used to reason about the “steady-state”
behaviour of a model, i.e. its behaviour in the “long-run” or “equilibrium”.
Although this could in principle relate to all three model types, PRISM cur-
rently only provides support for CTMCs. The definition of steady-state (long-
run) probabilities for finite CTMCs is well defined (see e.g. [50]). Informally,
a property such as Sbound [prop] is true in a state s of a CTMC if “start-
ing from s, the steady-state (long-run) probability of being in a state which
satisfies prop, meets the bound bound”.

5.1 Quantitative probability calculations

In PRISM, we can also directly specify properties which evaluate to a numer-
ical value. This is achieved by replacing the probability bounds from the P

and S operators with =? and is illustrated in the following examples:

• P =? [! proc2 terminate U proc1 terminate]
“the probability that process 1 terminates before process 2 does”

• Pmax =? [true U≤T (message lost>10)]
“the maximum probability that more than 10 messages have been lost by
time T”

• S =? [(queue size/max size)>0.75]
“the long-run probability that the queue is more than 75% full”

Note that this is only allowed when the P or S in question is the outermost
operator of the property.

For MDPs, the probabilities can only be computed once the nondetermin-
ism has been resolved. Hence, PRISM actually computes either the minimum
or maximum probability of a path property being satisfied, quantifying over

13

Kwiatkowska, Norman, Parker

all possible resolutions (i.e. the best and worst cases). Therefore, for MDPs
we use either Pmin =? or Pmax =?.

By default, the result for properties of this kind is the probability for the
initial state of the model. It is also possible, however, to obtain the probability
for an arbitrary state, as shown in the following example:

• P =? [queue size ≤ 5 U queue size < 5 {queue size = 5}]
“the probability, from the state where the queue contains 5 jobs, of the
queue processing at least one job before another arrives”

Furthermore, it is possible to compute the minimum or maximum probability
for a particular class of states, e.g.:

• P =? [! proc2 terminate U proc1 terminate {init}{min}]
“the minimum probability, over all possible initial configurations, that pro-
cess 1 terminates before process 2 does”

5.2 Specification of reward-based properties

As described in Section 4.3, PRISM models can be augmented with informa-
tion about rewards. Properties can then be analysed by PRISM which relate
to the expected value of these rewards. These are specified using the R op-
erator, which works in a very similar fashion to the P and S operators. The
following are some typical examples:

• R =? [I = 100]
“after 100 time units, the expected number of packets awaiting delivery”

• R =? [C ≤ 24]
“the expected power consumption during the first 24 hours of operation”

• Rmax =? [F completed]
“the worst-case (over all possible scheduling of processes) expected number
of messages lost during the execution of the protocol”

• R =? [F elected {init}{max}]
“from any initial configuration, the worst-case expected number of steps
required for the leader election algorithm to complete”

• R < 10 [S]
“the long-run expected queue-size is less than 10”

Note the meaning ascribed to the properties is, of course, dependent on the
definitions of the rewards themselves. Note also that there are two distinct
types of interpretations of rewards. Firstly, they can be considered to be
instantaneous , where a measure of interest is simply the value of a state reward
at a particular time instant, e.g. “queue size”. These are typically used with
the I or S reward operators. Secondly, rewards can be cumulative, where
the values must be summed to provide a meaningful result, e.g. “number of
messages lost”, “number of steps”, “time”, “power consumption”. These are
usually analysed with the C, F or S reward operators. Finally, we also point

14

Kwiatkowska, Norman, Parker

out that, for cumulative rewards in CTMC models, the reward assigned to
each state is assumed to be the rate at which reward is accumulated in that
state, i.e. if the reward in a state is r and the state is occupied for time t, the
reward cumulated during this time will be r · t.

6 PRISM case studies

PRISM has been successfully applied to a large number of case studies in a
wide range of application domains, listed below. PRISM code for many of
them is also distributed with the tool itself.

• Analysis of quality of service (QoS) properties of several real-time com-
munication protocols, including Bluetooth [15], IEEE 1394 FireWire root
contention [12,32], Zeroconf [29], IEEE 802.3 CSMA/CD [33,14] and IEEE
802.11 wireless LANs [31].

• Verification of probabilistic security protocols for anonymity (Crowds pro-
tocol [48], synchronous batching [13]), fair exchange and contract signing
[42], and non-repudiation [35].

• Analysis of randomised distributed algorithms for self-stabilisation, consen-
sus [30], Byzantine agreement [24], mutual exclusion and leader election
[16].

• Evaluation of the performance, reliability and dependability of a wide range
of systems, including dynamic power management schemes [41], NAND
multiplexing for nanotechnology [37,38], controller systems [26], product
data management systems [51,52], PC clusters, manufacturing systems and
queueing systems.

Below, we select three case studies that illustrate different aspects of quanti-
tative analysis with PRISM. For further information about all the examples
described in this paper, and more, see the case studies section of the PRISM
website [45].

6.1 Self-stabilisation algorithms

A self-stabilising protocol for a network of processes is a protocol which trans-
forms a system from an unstable state to a stable state in a finite number of
steps and without any outside intervention. Here we consider a class of ran-
domised self-stabilising algorithms. Randomisation is often used in distributed
coordination problems as a symmetry breaker, to provide simple, elegant and
fast solutions. Randomised distributed algorithms can be difficult to analyse
because of non-trivial interactions between the probabilistic behaviour of each
process and the nondeterminism arising from concurrency between them. This
makes probabilistic model checking an attractive option.

In each of the protocols we consider, the network is a ring of identical
processes P1, . . . , Pn. The stable states are those where there is exactly one

15

Kwiatkowska, Norman, Parker

process designated as “privileged” (has a token). Once a stable state is reached
this privilege (token) should be passed around the ring forever in a fair manner.
For each of the protocols, we check that the minimum probability of reaching
a stable state is 1 for all possible initial configurations and then compute both
the maximum and minimum expected time (number of steps) to reach a stable
state over every possible initial configuration of the protocol. Note that, to
allow us to consider every possible configuration, we include, in the PRISM
description of each protocol, a init . . . endinit statement which specifies all
possible initial states.

6.1.1 Herman’s protocol

Our first example is the algorithm of Herman [19]. The protocol operates
synchronously, the ring is oriented and the number of processes in the ring
must be odd. Tokens can be passed unidirectionally around the ring, and when
two tokens meet they are both eliminated. At every step of the algorithm,
each process with a token decides whether to keep it or pass it on based on
the outcome of a random coin toss. More precisely, each process Pi in the ring
has a local boolean variable xi, and processor Pi has a token if xi = xi−1. In a
basic step of the protocol, if the current values of xi and xi−1 are equal, then
processor Pi makes a (uniform) random choice as to the next value of xi, and
otherwise it sets it equal to the current value of xi−1. The PRISM source code
for a ring of size 3 is given in Figure 5.

We first verify the property “a stable state is reached with probability
1”, expressed as P≥1 [true U stable] where stable is the atomic proposition
representing the fact that there is only one token, for example in the case of
three processes stable is given by the expression:

(x3=x1?1:0)+(x1=x2?1:0)+(x2=x3?1:0)=1 .

Secondly, since we assign a cost of one unit to each step of the algorithm (see
Figure 5), PRISM can be used to compute “the expected time (number of
steps) for self-stabilisation to complete”, expressed as R =?[F stable]. More
precisely, we compute the worst case and best case expected times for all initial
configurations with K tokens, for different values of K, which, in the case of
three processes, is expressed by the specifications:

R=? [F stable {(x3=x1?1:0)+(x1=x2?1:0)+(x2=x3?1:0)=K}{max}]

R=? [F stable {(x3=x1?1:0)+(x1=x2?1:0)+(x2=x3?1:0)=K}{min}]

In Figure 6 we present the results obtained with PRISM when verifying these
specifications for a range of numbers of processes (N) and a range of values
of K.

This PRISM case study illustrates an unproven conjecture from [36] that
the worst case execution time for this algorithm always results from the case
where there are initially three tokens. The results also show that the min-
imum and maximum expected times respectively increase and decrease as

16

Kwiatkowska, Norman, Parker

// Herman’s self-stabilising algorithm [Her90]
// gxn/dxp 13/07/02

// the protocol is synchronous with no non-determinism (a DTMC)
probabilistic

// module for process 1
module process1

// bits in the ring (initially all the same i.e. a token in every place)
x1 : [0..1];

[step] x1 = x3 → 0.5 : (x1 ′ = 0) + 0.5 : (x1 ′ = 1);
[step] x1 ! = x3 → (x1 ′ = x3);

endmodule

// add further processes through renaming
module process2 = process1 [x1 = x2 , x3 = x1] endmodule
module process3 = process1 [x1 = x3 , x3 = x2] endmodule

// cost - 1 for each transition (expected steps)
rewards

[] true : 1;

endrewards

// initial states (at least one token i.e. all states)
init

true

endinit

Fig. 5. PRISM language description of Herman’s self-stabilisation algorithm (3
processes)

one increases the value of K. Furthermore, we can make a comparison with
simulation-based techniques. Model checking with PRISM involves a single
DTMC model with multiple initial states, for which PRISM executes a single
analysis. On the other hand, simulation, for example, would have to be per-
formed separately for each initial state (for example in the case when N = 19
the are approximately half a million possible configurations to consider) to
obtain comparable results.

17

Kwiatkowska, Norman, Parker

1 3 5 7 9 11 13 15 17 19
0

10

20

30

40

50

60

K

E
xp

ec
te

d
tim

e

N=19
N=17
N=15
N=13
N=11
N=9
N=7
N=5
N=3

(a) Maximum expected time

1 3 5 7 9 11 13 15 17 19
0

5

10

15

20

25

30

35

40

K

E
xp

ec
te

d
tim

e

N=19
N=17
N=15
N=13
N=11
N=9
N=7
N=5
N=3

(b) Minimum expected time

Fig. 6. Expected time results for Herman’s self-stabilisation algorithm.

6.1.2 Israeli and Jalfon protocol

This protocol originates from [22]. It operates asynchronously with an arbi-
trary scheduler, the ring is oriented and communication is bidirectional in the
ring. Each process has a boolean variable qi which represents the fact that
a token is in place i. A process is active if it has a token and only active
processes can be scheduled. When an active process is scheduled, it makes a
(uniform) random choice as to whether to move the token to its left or right.
As before, tokens colliding are merged into a single one.

We model the protocol in PRISM, which yields an MDP model (due to
the fact that the protocol is asynchronous). In Figure 7 we demonstrate the
outcome of model checking the minimum and maximum expected times to
reach a stable state given that the initial number of tokens equals K, as K
varies. In the case of three processes, this corresponds to checking the following
specifications (since this model is an MDP we use Rmax and Rmin as opposed
to R):

Rmax=? [F (q1+q2+q3=1) {q1+q2+q3=K}{max}]

Rmin=? [F (q1+q2+q3=1) {q1+q2+q3=K}{min}]

Note that this algorithm does not exhibit the trend observed for the Herman
ring, i.e. both the minimum and maximum expected times increase as we
increase K.

6.1.3 Beauquier, Gradinariu and Johnen protocol

Finally, we consider the self-stabilising protocol of [7] for an arbitrary sched-
uler. It operates asynchronously, the ring is oriented, communication is uni-
directional in the ring, and the number processes in the ring must be odd.
Each process has two boolean variables, di and pi, where if di = di−1, process
i is said to have a deterministic token; and if pi = pi−1 process i is said to
have a probabilistic token. The stable states are those where there is only one
probabilistic token. A process is active if it has a deterministic token and only
active processes can be scheduled. When an active process is scheduled, it

18

Kwiatkowska, Norman, Parker

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

K

E
xp

ec
te

d
tim

e

N=12
N=11
N=10
N=9
N=8
N=7
N=6
N=5
N=4
N=3

(a) Maximum expected time

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

K

E
xp

ec
te

d
tim

e

N=12
N=11
N=10
N=9
N=8
N=7
N=6
N=5
N=4
N=3

(b) Minimum expected time

Fig. 7. Expected time results for Israeli and Jalfon’s self-stabilisation algorithm.

1 3 5 7 9 11
0

20

40

60

80

100

120

140

160

K

E
xp

ec
te

d
tim

e N=11
N=9
N=7
N=5
N=3

(a) Maximum expected time

1 3 5 7 9 11
0

2

4

6

8

10

12

14

16

K

E
xp

ec
te

d
tim

e N=11
N=9
N=7
N=5
N=3

(b) Minimum expected time

Fig. 8. Expected time results for Beauquier, Gradinariu and Johnen’s
self-stabilisation algorithm.

sets di to be the negation of its current value (passes the deterministic token)
and, if it also has a probabilistic token, it makes a (uniform) random choice
as to the next value of pi (randomly selects whether to pass the probabilistic
token or not).

Figure 8 shows the results obtained with PRISM when computing the
worst- and best-case expected time until a stable state is reached as K and N
varies. In the results for this model, we observe the trend as in Herman’s ring,
namely that the configurations which achieve the maximum expected time are
those where only three processes have probabilistic tokens (compare Figure 6
and Figure 8).

6.2 Dynamic voltage scaling

Our next example concerns power management , an area that has become
extremely relevant because of the need to preserve battery life and hence
power efficiency. Here, we consider a technique called dynamic voltage scaling,
used in real-time embedded systems to achieve a compromise between battery
life and performance. The technique is used to schedule a number of tasks

19

Kwiatkowska, Norman, Parker

0 8 16 24 32 40 48 56
0

500

1000

1500

2000

T

E
xp

ec
te

d
re

w
ar

d

static RM
cc RM
static EDF
cc EDF

(a) Small time scale

0 160 320 480 640 800 960 1120
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

T

E
xp

ec
te

d
re

w
ar

d

static RM
cc RM
static EDF
cc EDF

(b) Large time scale

Fig. 9. Expected energy consumption for four different dynamic voltage scaling
scheduling schemes over time.

which must be executed periodically. Each task has an associated period and
a worst-case execution time. The voltage of the system can also be varied
during scheduling, which has the effect of reducing the power consumption of
the system. This will, however, slow down the execution of the current task.
The aim is to schedule tasks and voltage changes in such a way that power
consumption is minimised whilst ensuring that all tasks are executed within
their deadlines.

We have modelled and analysed in PRISM the performance of several
scheduling schemes from [44]. The need for probability arises because the ac-
tual execution time of each task is random (only a worst-case figure is known).
Nondeterminism also has to be modelled, to represent the fact that it is some-
times unspecified which task a scheduling scheme will pick. Thus, the derived
model is an MDP, and hence we examine the worst-case behaviour of any
implementation of each algorithm.

Figure 9 shows a comparison of “the maximum expected energy consumed
by a given time bound” for four scheduling schemes (see [45] for more details).
The actual cost measured is the square of the system’s voltage, which is pro-
portional to the energy consumed. The comparisons match those observed in
[44], obtained through simulation.

Another probabilistic model checking case study in this area can be found
in [39,40], which studies stochastic dynamic power management strategies.
Here, a wide range of properties can be analysed, e.g.: “the expected number
of jobs awaiting service at time T”, “the probability that 50 job requests have
been lost by time T” and “the expected long-run power consumption”.

6.3 Biological process modelling

Our last example comes from a new area of applications for probabilistic model
checking – biological processes. It is well known that the time until a reaction
occurs between two molecules can be adequately modelled as an exponen-
tial distribution, and therefore CTMC models are appropriate. At the same

20

Kwiatkowska, Norman, Parker

0 0.2 0.4 0.6 0.8 1
x 10

−3

0

0.2

0.4

0.6

0.8

1

T

P
ro

ba
bi

lit
y

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

(a) Probability i Na molecules at
time T (small time scale)

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

T

P
ro

ba
bi

lit
y

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

(b) Probability i Na molecules at
time T (large time scale)

0 1 2 3 4 5 6
x 10

−3

20

30

40

50

60

70

80

90

100

T

E
xp

ec
te

d
re

w
ar

d

N1=10
N1=20
N1=40
N1=60
N1=80
N1=100
N1=200

(c) Expected percentage of Na
molecules at time T

2 10 18 26 34 42 50
5

10

15

20

25

N1

E
xp

ec
te

d
re

w
ar

d

(d) Long run average percentage of
Na molecules

Fig. 10. Model checking results for the biochemical reaction case study

time, molecular interactions can be described using process algebra. In [47],
the stochastic pi-calculus was used to model a number of biochemical reac-
tions which were then analysed through simulation. Here we use PRISM to
model the same reactions and analyse the models through probabilistic model
checking.

We construct a CTMC model of the system where the states of the CTMC
correspond to the number of molecules of each type and the transitions corre-
spond to the possible reactions between the molecules. The rate of a reaction
is determined by a base rate and the concentrations of the reactants (i.e. the
number of each type of molecule that takes part in the reaction).

We consider the ionic reaction:

Na + Cl←→ Na+ + Cl−

involving the oxidation of sodium (Na) and reduction of chlorine (Cl). In
our experiments we suppose that initially the number of Na molecules and Cl
molecules equals N (and there are no Na+ or Cl− molecules).

The first property we consider is the probability that the number of Na
molecules at time T equals i for i = 0, . . . , N . This property is specified by

21

Kwiatkowska, Norman, Parker

the formula

P=?[true U[T ,T] na=i] .

Figures 10(a) and 10(b) plot, for the case when N = 10, these probabilities as
the value of T varies.

The second property we consider is the expected percentage of Na molecules
at time T . This property is specified by the CSL formula R =?[I = T] where
the reward in a state is the percentage of Na molecules, i.e. if na is the variable
denoting the number of Na molecules, then the reward in each state equals
(100 · na)/N . Figure 10(c) presents the results, for a range of values of N ,
obtained with PRISM when verify this formula as the value of T varies.

Finally we consider the expected long-run percentage of Na molecules.
This property is specified by the CSL formula R =?[S]. where the reward in
a state is again the percentage of Na molecules. Figure 10(d) presents these
expected values as N varies.

Biological systems have been expressed in the process algebra PEPA [9]
and analysed using probabilistic model checking in PRISM in [10].

We also observe that conventional temporal model checking can be em-
ployed to analyse biological systems, for example to consider the possibility
and impossibility of certain temporal relationships between events.

7 Conclusion

We have given a high-level overview of probabilistic model checking with
PRISM, the software tool developed at the University of Birmingham. Many
researchers have participated in the development of probabilistic model check-
ing techniques and PRISM, as well as performing case studies, see the “Peo-
ple” link at [45]; their contributions are gratefully acknowledged. We have
demonstrated the usefulness of probabilistic model checking in domains as
wide-ranging as performance analysis, reliability and biology, focusing in par-
ticular on the quantitative analysis which allows one to obtain exact best-,
worst- and average-case system characteristics. Of the 30 or so case studies
that were modelled, six contained flaws.

In comparison with simulation, probabilistic model checking has a number
of advantages; it is exhaustive, good for ‘corner cases’ and analysis such as
‘for all possible initial states’ or ‘for all schedules’. On the other hand, sim-
ulation is more amenable to more complex stochastic scenarios such as those
featuring general distributions. State-space explosion is the main limitation of
probabilistic model checking, and techniques for abstraction, model reduction
and compositional reasoning are subject of active research.

Currently, PRISM models are finite-state and have to be manually de-
scribed in the modelling language, as opposed to being automatically extracted
from source code. We are extending PRISM in a number of directions, for
example with real-time [33], simulation-based approximate analysis [54,14],

22

Kwiatkowska, Norman, Parker

parallelisation [55], and biology applications.

References

[1] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time
Markov chains. In R. Alur and T. Henzinger, editors, Proc. 8th International
Conference on Computer Aided Verification (CAV’96), volume 1102 of LNCS,
pages 269–276. Springer, 1996.

[3] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications. In Proc. International
Conference on Computer-Aided Design (ICCAD’93), pages 188–191, 1993. Also
available in Formal Methods in System Design, 10(2/3):171–206, 1997.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking
algorithms for continuous-time Markov chains. IEEE Transactions on Software
Engineering, 29(6):524–541, 2003.

[5] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. In J. Baeten and S. Mauw, editors,
Proc. 10th International Conference on Concurrency Theory (CONCUR’99),
volume 1664 of LNCS, pages 146–161. Springer, 1999.

[6] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

[7] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements
for self-stabilizing leader election protocols. In Proc. ACM Symposium on
Principles of Distributed Computing, pages 199–208, 1999.

[8] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In P. Thiagarajan, editor, Proc. 15th Conference on
Foundations of Software Technology and Theoretical Computer Science, volume
1026 of LNCS, pages 499–513. Springer, 1995.

[9] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP on the
ERK signalling pathway using the stochastic process algebra PEPA. In Proc.
Workshop on Concurrent Models in Molecular Biology (BIOCONCUR’04),
ENTCS. Elsevier, 2004. To appear.

[10] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling
pathways using the PRISM model checker. In G. Plotkin, editor, Proc.
Computational Methods in Systems Biology (CMSB’05), 2005.

[11] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-
terminal binary decision diagrams: An efficient data structure for matrix
representation. In Proc. International Workshop on Logic Synthesis (IWLS’93),

23

Kwiatkowska, Norman, Parker

pages 1–15, 1993. Also available in Formal Methods in System Design,
10(2/3):149–169, 1997.

[12] C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the
IEEE 1394 root contention protocol with KRONOS and PRISM. International
Journal on Software Tools for Technology Transfer (STTT), 5(2–3):221–236,
2004.

[13] R. Dingledine, V. Shmatikov, and P. Syverson. Synchronous batching: From
cascades to free routes. In Proc. 4th Workshop on Privacy Enhancing
Technologies (PET’04), 2004.

[14] M. Duflot, L. Fribourg, T. Hérault, R. Lassaigne, F. Magniette, S. Messika,
S. Peyronnet, and C. Picaronny. Probabilistic model checking of the CSMA/CD
protocol using PRISM and APMC. In Proc. 4th Workshop on Automated
Verification of Critical Systems (AVoCS’04), volume 128(6) of Electronic Notes
in Theoretical Computer Science, pages 195–214. Elsevier Science, 2004.

[15] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. A formal analysis
of Bluetooth device discovery. In Proc. 1st International Symposium on
Leveraging Applications of Formal Methods (ISOLA’04), 2004. To appear.

[16] W. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for anonymous
rings. In Proc. 4th Workshop on Automated Verification of Critical Systems
(AVoCS’04), volume 128(6) of Electronic Notes in Theoretical Computer
Science, pages 53–68. Elsevier Science, 2004.

[17] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[18] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent
programs. ACM Transactions on Programming Languages and Systems,
5(3):356–380, 1983.

[19] T. Herman. Probabilistic self-stabilization. Information Processing Letters,
35(2):63–67, 1990.

[20] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In S. Graf and M. Schwartzbach, editors, Proc. 6th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’00), volume 1785 of LNCS, pages 347–362. Springer, 2000.

[21] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[22] A. Israeli and M. Jalfon. Token management schemes and random walks yield
self-stabilizating mutual exclusion. In Proc. ACM Symposium on Principles of
Distributed Computing, pages 119–131, 1990.

[23] B. Jeannet, P. D’Argenio, and K. Larsen. Rapture: A tool for verifying Markov
decision processes. In I. Cerna, editor, Proc. Tools Day, affiliated to 13th Int.
Conf. Concurrency Theory (CONCUR’02), Technical Report FIMU-RS-2002-
05, Faculty of Informatics, Masaryk University, pages 84–98, 2002.

24

Kwiatkowska, Norman, Parker

[24] M. Kwiatkowska and G. Norman. Verifying randomized Byzantine agreement.
In D. Peled and M. Vardi, editors, Proc. Formal Techniques for Networked
and Distributed Systems (FORTE’02), volume 2529 of LNCS, pages 194–209.
Springer, 2002.

[25] M. Kwiatkowska, G. Norman, and D. Parker. PRISM users’ guide. Available
from www.cs.bham.ac.uk/~dxp/prism.

[26] M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability analysis
by probabilistic model checking. In Proc. 11th IFAC Symposium on Information
Control Problems in Manufacturing (INCOM’04), 2004.

[27] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0: A tool
for probabilistic model checking. In Proc. 1st International Conference
on Quantitative Evaluation of Systems (QEST’04), pages 322–323. IEEE
Computer Society Press, 2004.

[28] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: A hybrid approach. International Journal on Software
Tools for Technology Transfer (STTT), 6(2):128–142, 2004.

[29] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance
analysis of probabilistic timed automata using digital clocks. In K. Larsen
and P. Niebert, editors, Proc. Formal Modeling and Analysis of Timed Systems
(FORMATS’03), volume 2791 of LNCS, pages 105–120. Springer-Verlag, 2003.

[30] M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a
randomized distributed consensus protocol using Cadence SMV and PRISM. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. 13th International Conference
on Computer Aided Verification (CAV’01), volume 2102 of LNCS, pages 194–
206. Springer, 2001.

[31] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking
of the IEEE 802.11 wireless local area network protocol. In H. Hermanns
and R. Segala, editors, Proc. 2nd Joint International Workshop on Process
Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV’02), volume 2399 of LNCS, pages 169–187. Springer, 2002.

[32] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking
of deadline properties in the IEEE 1394 FireWire root contention protocol.
Formal Aspects of Computing, 14(3):295–318, 2003.

[33] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model
checking for probabilistic timed automata. In Y. Lakhnech and S. Yovine,
editors, Joint Conference on Formal Modelling and Analysis of Timed Systems
(FORMATS) and Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT), volume 3253 of LNCS, pages 293–308. Springer, 2004.

[34] M. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood. Dual-processor
parallelisation of symbolic probabilistic model checking. In D. DeGroot
and P. Harrison, editors, Proc. 12th International Symposium on Modeling,

25

www.cs.bham.ac.uk/~dxp/prism

Kwiatkowska, Norman, Parker

Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS’04), pages 123–130. IEEE Computer Society Press, 2004.

[35] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Automatic analysis of a non-
repudiation protocol. In Proc. 2nd International Workshop on Quantitative
Aspects of Programming Languages (QAPL’04), 2004.

[36] A. McIver and C. Morgan. Abstraction, refinement and proof for probabilistic
systems. Springer, 2004.

[37] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the
reliability of defect-tolerant architectures for nanotechnology with probabilistic
model checking. In Proc. International Conference on VLSI Design (VSLI’04),
pages 907–914. IEEE Computer Society Press, 2004.

[38] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the
reliability of NAND multiplexing with PRISM. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(10):1629–1637,
2005.

[39] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Formal
analysis and validation of continuous time Markov chain based system level
power management strategies. In W. Rosenstiel, editor, Proc. 7th Annual
IEEE International Workshop on High Level Design Validation and Test
(HLDVT’02), pages 45–50. IEEE Computer Society Press, 2002.

[40] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using
probabilistic model checking for dynamic power management. In M. Leuschel,
S. Gruner, and S. L. Presti, editors, Proc. 3rd Workshop on Automated
Verification of Critical Systems (AVoCS’03), Technical Report DSSE-TR-2003-
2, University of Southampton, pages 202–215, April 2003.

[41] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using
probabilistic model checking for dynamic power management. Formal Aspects
of Computing, 17(2):160–176, 2005.

[42] G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. In
A. Abdallah, P. Ryan, and S. Schneider, editors, Proc. BCS-FACS Formal
Aspects of Security (FASec’02), volume 2629 of LNCS, pages 81–96. Springer,
2003.

[43] D. Parker. Implementation of Symbolic Model Checking for Probabilistic
Systems. PhD thesis, University of Birmingham, 2002.

[44] P. Pillai and K. Shin. Real-time dynamic voltage scaling for low-powered
embedded operating systems. Operating Systems Review, 35(5):89–102, 2001.

[45] PRISM web site. www.cs.bham.ac.uk/~dxp/prism.

[46] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, P. Panangaden
and F. van Breugel (eds.), volume 23 of CRM Monograph Series. American
Mathematical Society, 2004.

26

www.cs.bham.ac.uk/~dxp/prism

Kwiatkowska, Norman, Parker

[47] E. Shapiro. Biomolecular processes as concurrent computation. Course at the
Weizmann Institute of Science, Israel, 2001.

[48] V. Shmatikov. Probabilistic model checking of an anonymity system. Journal
of Computer Security, 12(3/4):355–377, 2004.

[49] F. Somenzi. CUDD: Colorado University decision diagram package. Public
software, Colorado Univeristy, Boulder, http://vlsi.colorado.edu/~fabio,
1997.

[50] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton, 1994.

[51] M. ter Beek, M. Massink, and D. Latella. Towards model checking stochastic
aspects of the thinkteam user interface. In Proc. 12th International Workshop
on Design, Specification and Verification of Interactive Systems (DSVIS’05).
Springer, 2005. To appear.

[52] M. ter Beek, M. Massink, and D. Latella. Towards model checking stochastic
aspects of the thinkteam user interface - full version. Technical Report 2005-
TR-18, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale
delle Ricerche, 2005.

[53] M. Vardi. Automatic verification of probabilistic concurrent finite state
programs. In Proc. 26th Annual Symposium on Foundations of Computer
Science (FOCS’85), pages 327–338. IEEE Computer Society Press, 1985.

[54] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.
statistical probabilistic model checking. International Journal on Software
Tools for Technology Transfer (STTT), 2005. To appear.

[55] Y. Zhang, D. Parker, and M. Kwiatkowska. A wavefront parallelisation
of CTMC solution using MTBDDs. In Proc. International Conference on
Dependable Systems and Networks (DSN’05), pages 732–742. IEEE Computer
Society Press, 2005.

27

http://vlsi.colorado.edu/~fabio

	Introduction
	Probabilistic model checking
	The Models
	Property specifications
	Probabilistic analysis methods

	The PRISM model checker
	Tool overview
	Implementation

	The PRISM modelling language
	Modules, variables and commands
	Composing modules
	Costs and rewards

	Property specifications
	Quantitative probability calculations
	Specification of reward-based properties

	PRISM case studies
	Self-stabilisation algorithms
	Dynamic voltage scaling
	Biological process modelling

	Conclusion
	References

