
Automated Mediator Synthesis: Combining
Behavioural and Ontological Reasoning

Amel Bennaceur1, Chris Chilton2, Malte Isberner3, and Bengt Jonsson4

1 ARLES, Inria Paris - Rocquencourt, France
2 Department of Computer Science, University of Oxford, UK

3 Technical University of Dortmund, Germany
4 Department of Information Technology, Uppsala University, Sweden

Abstract. Software systems are increasingly composed of independently
developed heterogeneous components. To ensure interoperability, medi-
ators are needed that coordinate actions and translate exchanged mes-
sages between the components. We present a technique for automated
synthesis of mediators, by means of a quotient operator, that is based on
behavioural models of the components and an ontological model of the
data domain. By not requiring a specification of the composed system,
the method supports both off-line and run-time synthesis. The obtained
mediator is the most general component that ensures freedom of both
communication mismatches and deadlock in the composition. Validation
of the approach is given by implementation of a prototype tool, while ap-
plicability is illustrated on heterogeneous holiday booking components.

Keywords: mediator synthesis, quotient, ontology, deadlock-freeness.

1 Introduction

Modern software-intensive systems are increasingly composed of numerous inde-
pendently developed and network-connected software components. These com-
ponents often exhibit heterogeneous behaviour, which prevents them from inter-
acting with one another according to a particular protocol. To circumvent this
problem, mediators (or mediating adapters [YS97,CMS+09]) can be designed,
which are intermediary software entities that allow heterogeneous software com-
ponents to interact seamlessly, by coordinating their behaviours and translating
the messages that they exchange. Due to the vast number of potential inter-
action patterns, it is not feasible to design a generic mediator that will allow
an arbitrary collection of components to communicate. Instead, one approach
towards facilitating communication involves the automated synthesis of a medi-
ator, based on the behaviours of the components needing to interact.

Automatic mediator synthesis presupposes formal models of the participat-
ing components, each specifying the allowed sequences of interactions. Models
can be directly specified by component developers, or can be automatically in-
ferred (given their interfaces) by black-box inference [MHS+12]. Existing ap-
proaches for mediator synthesis also need specifications representing the com-
posed behaviour of the components. For instance, synthesis of protocol converters

2 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

in [CL90,PdAHSV02] requires a specification of the service delivered by the com-
posed system; similarly, in synthesising mediators for composed web services, an
explicit specification of the relationships between the data parameters in differ-
ent interface primitives is needed [BPT10]. Providing such specifications is an
obstacle to automated synthesis, especially at run-time.

In this paper, we propose a rigorous methodology for the automated synthesis
of mediators, based on models of the components and of the data domain, which
does not require an explicit specification of the intended composition, making the
techniques suitable for both off-line and run-time synthesis. Components may
have incompatible behaviours and utilise different interaction vocabularies. To
bridge this heterogeneity barrier, we rely on a domain ontology, which shows the
relationships between data concepts of the interaction vocabularies. The domain
ontology is generic to the application area of the components, and so no extra
information need be supplied at synthesis time.

Our synthesis method is structured into two phases. First, the domain ontol-
ogy is used to derive a correspondence between actions of different components,
together with ordering constraints that must be respected between them. In
the second phase, we synthesise a mediator using a quotient operator, by util-
ising the behavioural models of the participating components and the ordering
constraints derived from the ontology. Our quotient operator extends existing
definitions [BR08], in that it is sensitive to progress properties. Thus, mediators
generated by our methodology are free from communication mismatches, en-
sure progress towards the goals of individual components, and respect the data
constraints implicitly given by the domain ontology.

Outline. Section 2 introduces our component modelling formalism, along with
the notions of parallel composition, refinement and quotient, which are essen-
tial for our synthesis methodology. Ontologies are presented in Section 3, where
their role in modelling the semantics of component actions is explained. Sec-
tion 4 describes the methodology for automatically synthesising mediators free
of communication mismatches and premature deadlock, while Section 5 describes
our prototype implementation and discusses its applicability. Section 6 examines
related work, while Section 7 concludes and suggests future work.

2 Primer on the Compositional Specification Theory

In this section, we introduce the necessary parts of our compositional specifica-
tion theory for modelling components [CCJK12]. The behaviour of a component
specifies the sequences of allowed interactions between the component and its
environment, which can be represented by a labelled transition system (LTS).
The labels are partitioned into input and output actions, although internal ac-
tions can also be accommodated. In a state, the component is willing to receive
(from the environment) any enabled input, and may emit any enabled output. If
the environment supplies an input that is not enabled, an inconsistency arises,
which can be understood as either underspecification, or an undesired situation
corresponding to run-time error or bad behaviour.

Automated Mediator Synthesis 3

To model deadlock and termination, a state can be designated as quiescent.
The intuition is that a component must not block (i.e., must eventually emit an
output if no input appears) in a non-quiescent state. The modelling formalism
itself does not distinguish between undesirable deadlock and termination.

Our methodology is equally applicable to deterministic and non-deterministic
models, using the theory in [CCJK12]. Some definitions can be simplified in
the deterministic case, and for simplicity we will use these in this paper. Our
specification theory can then be seen as interface automata extended with the
capability to model deadlock and termination [dAH01].

Definition 1 (Behavioural model). A behavioural model of a component P
is a tuple 〈AI

P ,AO
P , SP , s

0
P , δP , QP〉, where AI

P and AO
P are disjoint sets referred

to as the inputs and outputs (the union of which we denote by AP), SP is a finite
set of states with s0P ∈ SP being the designated initial state, δP : SP×AP ⇀ SP
is the partial transition function, and QP ⊆ SP are the quiescent states.

We will not be fussy in distinguishing components from their models, and
will often refer to “the component A” for “the behavioural model of A”.

In a behavioural model of a component, we distinguish undesirable deadlocks
from termination by introducing a designated X action treated as an input. The
convention is that X can only be received when the component has successfully
terminated.

Refinement of components is defined using the alternating simulation for
interface automata extended to cope with quiescence. It guarantees safe-
substitutivity of components and preservation of deadlock-freeness.

Definition 2 (Refinement). Let P and Q be components. Then Q is a refine-
ment of P, written Q v P, if AI

P ⊆ AI
Q and AO

Q ⊆ AO
P , and there is a relation

v ⊆ SQ × SP , called an alternating simulation, such that whenever sQ v sP :

– if i ∈ AI
P is enabled in sP , then i is enabled in sQ and δQ(sQ, i) v δP(sP , i),

– if o ∈ AO
Q is enabled in sQ, then o is enabled in sP and δQ(sQ, o) v δP(sP , o),

– if sQ ∈ QQ, then sP ∈ QP ,

and such that s0Q v s0P .

The parallel composition of two components represents the combined effect
of them running asynchronously, and synchronizing on actions that are common
to their sets of inputs and outputs. To preserve the effect that a single output
from a component can be received by multiple components in its environment,
we must define the parallel composition to repeatedly broadcast an output: this
means that an input a and output a combine to form an output a. As each output
must be under the control of at most one component, the parallel composition
is only defined when the composed components have disjoint sets of outputs.
To obtain a modular definition of parallel composition, we first define a generic
product of two transition functions.

4 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

Definition 3 (Product). Let P and Q be components. The product of the tran-
sitions functions δP of P and δQ of Q is the partial function δP⊗Q : (SP×SQ)×
(AP ∪ AQ) ⇀ (SP × SQ), where δP⊗Q(〈sP , sQ〉, a) is defined as:

– 〈δP(sP , a), δQ(sQ, a)〉 when a ∈ AP ∩AQ, and both δP(sP , a) and δQ(sQ, a)
are defined,

– 〈δP(sP , a), sQ〉 when a ∈ AP \ AQ and δP(sP , a) is defined,
– symmetrically, 〈sP , δQ(sQ, a)〉 when a ∈ AQ \ AP and δQ(sQ, a) is defined,

and δP⊗Q(〈sP , sQ〉, a) is undefined otherwise. ut

A pair of states 〈sP , sQ〉 ∈ (SP×SQ) of P and Q is said to be incompatible if
for some output action a ∈ AO

P∪AO
Q, either δP(sP , a) or δQ(sQ, a) is defined, but

δP⊗Q(〈sP , sQ〉, a) is undefined. Intuitively, in an incompatible pair of states, one
component can perform an output that is not enabled as an input in the other
component, thus creating a communication mismatch. A pair of states 〈sP , sQ〉 ∈
(SP × SQ) is said to be potentially incompatible if there is a (possibly empty)
sequence of outputs a1 · · · an in AO

P ∪ AO
Q that leads to an incompatible pair of

states (i.e., δP⊗Q(. . . (δP⊗Q(δP⊗Q(〈sP , sQ〉, a1), a2) . . .), an) is incompatible).
We use the product operation in the definition of parallel composition.

Definition 4 (Parallel composition). Let P and Q be components such that
AO
P ∩ AO

Q = ∅. If 〈s0Q, s0P〉 is not potentially incompatible, then the parallel
composition of P and Q exists and is defined as the component P || Q =
〈(AI
P ∪AI

Q) \ (AO
P ∪AO

Q),AO
P ∪AO

Q, SP × SQ, (s0P , s0Q), δP||Q, QP ×QQ〉, where:
δP||Q(〈sP , sQ〉, a) = δP⊗Q(〈sP , sQ〉, a) whenever δP⊗Q(〈sP , sQ〉, a) is defined
and not potentially incompatible, otherwise δP||Q(〈sP , sQ〉, a) is undefined.

Intuitively, the transition function of P || Q is undefined for inputs that lead
to potentially incompatible pairs of states. If the environment supplies such an
input, then P || Q can potentially reach an incompatible pair of states, and such
a situation is regarded as inconsistent. The component P || Q is quiescent if
both P and Q are quiescent.

Travel agency example. To illustrate our synthesis methodology, we consider
a simple yet challenging example of a componentised and heterogeneous travel
agency system, initially presented in [BBG+11]. The first component, called
USClient, is a client-side software entity that allows customers to search for a
holiday package, which consists of a hotel, a flight, and a car, and to purchase
one if they so desire. The second component, called EUService, is a server-side
service that provides operations for selecting the constituent parts of a holiday
package (i.e., a hotel, a flight, and a car) separately.

The behaviour of the USClient and EUService components is represented by
the models in Figures 1 and 2. Component models are represented pictorially
by enclosing the transition system within a box corresponding to the interface.
Labelled arrows pointing at the interface correspond to inputs, whereas arrows

Automated Mediator Synthesis 5

findTripI findTripO confI confO X

findTripO confO X

findTripI confI

Fig. 1. Model of USClient

selHotelO selHotelO selHotelO selHotelO selHotelO

selHotelI selHotelI selHotelI selHotelI selHotelI

selF lightI

selF lightI

selF lightI

selF lightO

selF lightO

selF lightO

selCarI

selCarI

selCarI

selCarO

selCarO

selCarO

makeResI

makeResO

X

selF lightO selHotelO selCarO makeResO

selF lightI selHotelI selCarI makeResI X

Fig. 2. Model of EUService

emanating from the interface correspond to outputs. Quiescent states are repre-
sented by squares, and other states by circles.

USClient sends findTripI, which is a request for a travel package that in-
cludes the travel preference of the customer (i.e., destination, departure and
return dates). Then, USClient receives findTripO, which is a response includ-
ing a trip proposition. USClient confirms the reservation by sending the confI
request and receiving the acknowledgement within the confO response.

EUService receives the selHotelI, selF lightI, or selCarI requests for finding
a hotel, flight, or a car respectively given some customer preferences, which
consists of a destination, departure and return dates. It then replies with one of
the corresponding responses selHotelO, selF lightO, or selCarO, which include
propositions for a hotel, flight, and car respectively. While requests for a hotel
and a flight can be performed in any order, the request for a car can only
be performed once the flight has been selected. Once all parts of a trip are
validated, the EUService expects to receive a makeResI request for completing
the reservation, and sends the corresponding response makeResO.

The X action, which may occur precisely at the end of the transaction, indi-
cates that each component terminates only at the end of the transaction.

The two components have a functional discrepancy that prevents them from
directly interacting to secure a holiday, even though, at a high-level of abstrac-
tion, EUService provides the functionality required by USClient. It is our in-
tention to automatically synthesise a mediator allowing the two components to
successfully interoperate. The synthesis approach is based on the behavioural
models of each component, together with an ontology that represents knowledge
about the domain in which the components belong.

6 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

Quotient. The final operation that we consider is that of quotient, which can
be regarded as the adjoint (roughly “inverse”) of parallel composition. Given a
specification for a system R, together with a component P implementing part of
R, the quotient, denoted R/P, yields the weakest specification for the remaining
part ofR to be implemented. Thus,R/P is the weakest component such that P ||
(R/P) v R. It is sufficient to understand quotient in this way without examining
the formal definition below. Consequently, the remainder of this section may be
skipped without losing the ability to understand our synthesis methodology.

Here, we define the quotient R/P under the assumptions that AP ⊆ AR,
reflecting that P is a sub-component of R, and AO

P ⊆ AO
R, which is implied by

P || (R/P) v R. We postulate that AO
R/P = AO

R \ AO
P and AI

R/P = AO
P ∪ AI

R,

which allows R/P to monitor all the actions of P and R.

Definition 5 (Quotient). Let P and R be components such that AO
P ⊆ AO

R
and AP ⊆ AR. The quotient of P from R is the component R/P = 〈AO

P ∪
AI
R,AO

R \AO
P , SR/P , (s

0
P , s

0
R), δR/P , QR/P〉, defined only when (s0P , s

0
R) ∈ SR/P ,

where:

– SR/P is the largest subset of (SP × SR) such that
• if 〈sP , sR〉 ∈ SR/P and either a ∈ AO

P is enabled in sP , or a ∈ AI
P∩AI

R is
enabled in sR, then δP⊗R(〈sP , sR〉, a) is defined and δP⊗R(〈sP , sR〉, a) ∈
SR/P

• if 〈sP , sR〉 ∈ SR/P and sP ∈ QP and sR 6∈ QR, then there is some
a ∈ AO

R/P such that δP⊗R(〈sP , sR〉, a) ∈ SR/P
– δR/P(〈sP , sR〉, a) = δP⊗R(〈sP , sR〉, a) whenever 〈sP , sR〉 ∈ SR/P and
δP⊗R(〈sP , sR〉, a) ∈ SR/P , otherwise δR/P(〈sP , sR〉, a) is undefined

– QR/P = SR/P ∩ ((SP ×QR) ∪ (SP \QP)× SR).

Intuitively, the quotient can be constructed in a manner similar to the parallel
composition of P andR, but avoiding situations where: P can produce an output
not matched by R; R can accept an input in AI

R ∩ AI
P that P cannot accept;

and P is quiescent, R is not, and R/P cannot enforce an output action.

Theorem 1. Let P and R be components such that AO
P ⊆ AO

R and AP ⊆ AR.
If there exists a component Q with inputs AI

R/P and outputs AO
R/P , such that

P || Q v R, then R/P is defined, P || (R/P) v R and Q v (R/P).

3 Ontological Modelling and Reasoning

An ontology is “a specification of a representational vocabulary for a shared
domain of discourse” [Gru93]. The goal of an ontology is to model and reason
about domain knowledge. OWL DL5 (Web Ontology Language), which is the
W3C standard language to model ontologies, is based on a description logic
(DL), which specifies the vocabulary of a domain using concepts, attributes of
each concept, and relationships between these concepts.

5 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

Automated Mediator Synthesis 7

We provide an overview of the syntax and semantics of the basic DL con-
structs in Figure 3 and refer the interested reader to [BCM+03] for further
details. Each concept is given a definition as a set of logical axioms, which can
either be atomic or defined using different operators such as disjunction, con-
junction, and quantifiers. The attributes of a concept are defined using an object
property, which associates the concept with a built-in data type.

For example, consider an extract of the travel agency ontology depicted in
Figure 4. The Flight concept is characterised by attributes hasDepartureDate and
hasReturnDate of the built-in type DateTime, and hasFlightID of type String.

We describe the aggregation of concepts using the W3C recommendation for
part-whole relations6 (hasPart), where different concepts are composed together
to build a whole. A concept E is an aggregation of concepts C andD, written E =
C⊕D, providing both C andD are parts of E, i.e., E = ∃hasPart.C u ∃hasPart.D.
For example, the Trip concept is defined as the aggregation of the Flight, Hotel,
and Car concepts, meaning that each trip instance t ∈ Trip encompasses a Flight
instance (∃f ∈ Flight ∧ (t, f) ∈ hasPart), as well as Hotel and Car instances. The
rationale is that the mediator is able to generate a concept by concatenating
the attributes of all its parts (while avoiding duplication of attributes). Dually,
the mediator can create several concepts by distributing the attributes of the
aggregated concept across its different parts. This corresponds to the merging
and splitting of messages.

DL Syntax DL Semantics

Conjunction C uD (C uD)I = CI ∩DI

Disjunction C tD (C tD)I = CI ∪DI

Universal quantifier ∀R.C (∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI ⇒ y ∈ CI}
Existential quantifier ∃R.C (∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
Aggregation C ⊕D (C⊕D)I = {x ∈ ∆I | ∃y.(x, y) ∈ hasPartI∧y ∈ CI

∧∃z.(x, z) ∈ hasPartI∧z ∈ DI}
An interpretation I consists of a non-empty set ∆I (the domain of the interpretation)
and an interpretation function, which assigns to every atomic concept A a set AI ⊆ ∆I

and to every atomic object property R a binary relation RI ⊆ ∆I ×∆I .
C and D are concepts and R is an object property.

Fig. 3. Overview of DL operators

DL is used to support automatic reasoning about concepts and their rela-
tionships, in order to infer new relations that may not have been recognised by
the ontology designers. Traditionally, the basic reasoning mechanism is subsump-
tion. Intuitively, if a concept C is subsumed by a concept D, written C 6O D,
then any instance of C also belongs to D. In addition, all the relationships in
which D instances can be involved are applicable to C instances, i.e., all prop-
erties of D are also properties of C. Subsumption is a partial order relation, i.e.,
it is reflexive, antisymmetric, and transitive. As a result, the ontology can be
represented as a hierarchy of concepts, which can be automatically inferred by

6 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

8 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

ontology reasoners based on the axioms defining the ontological concepts. Sub-
sumption allows for the replacement of inequivalent messages, provided all of the
necessary data is conveyed. For instance, a mediator can generate a concept out
of a more specific concept, since the latter includes all the necessary attributes
of the former (cf subtyping in object-oriented systems).

Ontologies are used to represent the semantics of actions in components,
by making explicit the meaning of the interaction primitives. Each action of
a component refers to a concept in the ontology, which has an object prop-
erty hasData specifying the semantics of the data embedded in the action sent
or received by the component. For example, the input action selF lightI ∈
AI

EUService is associated with the TravelPreferences concept (i.e., selF lightI =
∃hasData.TravelPreferences). The output action selF lightO ∈ AO

EUService is as-
sociated with the Flight concept, that is selF lightO = ∃hasData.Flight. The
idea here is that EUService allows the selection of a flight by receiving a re-
quest message that contains the attributes of the TravelPreferences concept, that
is, a destination along with departure and return dates. Once the request has
been processed, EUService returns a response that includes the flight informa-
tion, which consists of a hotel identifier, and check in and check out dates.
The output action findTripI ∈ AO

USClient is also associated with the Travel-
Preferences concept, that is findTripI = ∃hasData.TravelPreferences. The in-
put action findTripO ∈ AI

USClient is associated with the Trip concept, that is
findTripO = ∃hasData.Trip. USClient sends a request message that includes
the travel preference of the customer, and receives a response with a trip, i.e., a
holiday package consisting of a flight, hotel, and car.

Trip

= Flight ♁�Car ♁ Hotel

Flight

∃ hasDepartureDate.DateTime
∃ hasFlightID.String
∃ hasReturnDate.DateTime

Car

∃ hasDate.DateTime
∃ hasCarID.String
∃ hasFlightID.String

Hotel

∃ hasHoteID.String
∃ hasCheckInDate.DateTime
∃ hasCheckOutDate.DateTime

findTripO

selCarOselHotelOselFlightO

+hasData{some}+ hasData{some} + hasData{some}

findTripI

selHotelI

selFlightI

TravelPreferences
∃ hasDepartureDate.DateTime
∃ hasReturnDate.DateTime
∃ hasDestination.String

selCarI

Subsumption
X Ontological concept

Object property

+ hasData{some}

confI
+ hasData{some}

makeResI

+ hasData{some}

makeResO

confO
+ hasData{some}

TravelConfirmation

∃ hasDepartureDate.DateTime
∃ hasReturnDate.DateTime
∃ hasClientID.String

Fig. 4. The travel agency ontology

4 Automated Mediator Synthesis

In this section, we describe our synthesis methodology for generating mediators
that allow components to successfully communicate with one another. Given
components P and Q, a component M is said to be a mediator if:

Automated Mediator Synthesis 9

G1. P || M || Q is defined, which implies that the composition will never exhibit
any communication mismatches;

G2. P || M || Q is guaranteed to progress until both P and Q have reached a
successfully terminating state; and

G3. P || M || Q must satisfy constraints on correspondences between actions,
and on data flow, that are implicitly imposed by the ontology.

Our methodology finds the most general mediator M satisfying the above
requirements, meaning that it is least refined with respect to the refinement v
of Definition 2. Due to the arbitrariness of the components needing to communi-
cate (especially if they are functionally different), existence of a mediator is not
guaranteed. This correlates with the fact that quotient is a partial operator. As
part of our automated synthesis methodology, the following steps are performed:

1. Using the ontology, we first derive temporal constraints on the occurrences
of actions in P and Q in order to respect the data flow on actions. These
constraints are represented by a component B that observes the executions
of P || M || Q and generates an inconsistency when a constraint is violated.

2. After, we perform a quotient operation that automatically synthesises a me-
diator M such that P || M || Q satisfies requirements G1 and G2, along
with the ordering constraints represented by the observer B (G3).

In the following two subsections, we explain these steps in more detail.

4.1 Inferring Ordering Constraints from Ontologies

By reasoning about the ontology-based semantics of actions, we can derive or-
dering constraints on the components’ communication primitives that respect
the semantical meaning of actions.

Let us consider an input action b that is associated with data db in a do-
main ontology O, i.e., b = ∃hasData.db where b and db are concepts belong-
ing to O. The data required for action b must be provided by one or several
output actions; in the simplest case by an output action a that is associated
with data da such that da 6O db. Moreover, action a must precede action
b, written a precedes b. The intuition behind this ordering constraint is that
the action a needs to provide the data required to achieve action b; it essen-
tially corresponds to a data-dependency in which each input action must be
preceded by output actions that supply the data items required for the execu-
tion of this input action. For example, the travel agency ontology specifies that
the input action selF lightI ∈ AI

EUService is associated with the data concept
TravelPreference. Since the only output action associated with this data concept
is findTripI ∈ AI

USClient, and TravelPreference 6O TravelPreference due to re-
flexivity of subsumption, we derive the ordering constraint findTripI precedes
selF lightI.

In the general case, a collection of input actions {b1, . . . , bm}, which are as-
sociated with data concepts {db1 , . . . , dbm} respectively, must be preceded by

10 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

a1 a2

b b

a1 a2 b

Fig. 5. Component Seq({a1, a2}, b) enforcing a1 precedes b or a2 precedes b

some collection of output actions {a1, . . . , an}, which are associated with data
concepts {da1

, . . . , dan
} such that da1

⊕· · ·⊕dan
6O db1 ⊕· · ·⊕dbm . If there are

several such collections of output actions, it suffices that {b1, . . . , bm} is preceded
by one of them. Clearly, we can restrict our consideration to minimal such col-
lections of output actions. For example, the input action findTripO ∈ AI

USClient

must be preceded by the collection of output actions {selF lightO, selHotelO,
selCarO} ⊆ AO

EUService, since it is the only minimal collection, whose aggre-
gated data is subsumed by the data of findTripO, i.e., Flight⊕Hotel⊕Car 6O Trip.

In order to extract such relations, we verify among possible combinations of
input/output actions of both components those verifying the data flow condi-
tions. Even though computing all possible preceding relations is NP-complete, we
rely on efficient search algorithms, which are based on constraint programming,
to make the computation effective in real-world settings [Con12a, pp. 49-57].

For each minimal disjunction of precedes relationships inferred from the on-
tology, we construct an observation component that has as interface the collec-
tion of primitives that appear in the relationship. For instance, the disjunction
a1 precedes b or a2 precedes b is represented by a component whose behaviour
forces either a1 or a2 to precede b, denoted by Seq({a1, a2}, b). Its behavior
is shown in Figure 5. Note that all the actions are treated as inputs and all
states are quiescent since the component is only observing the actions. If the
mediator or a component violates a constraint, the corresponding observer will
generate an inconsistency. The component B respecting the combined effect of
all the ontological constraints is then defined as the parallel composition of the
representations of the individual relationships. Note that this is always defined.

Considering the travel agency example, by reasoning about the semantics of
the actions of USClient and EUService using the ontology depicted in Figure 4,
we infer that findTripI precedes selF lightI, findTripI precedes selHotelI,
findTripI precedes selCarI, selF lightO precedes findTripO,
selHotelO precedes findTripO, selCarO precedes findTripO,
confI precedes makeResI, and makeResO precedes confO, which leads
to the following observer component:

B = (Seq(findTripI, selF lightI) || Seq(findTripI, selHotelI)
|| Seq(findTripI, selCarI) || Seq(selF lightO,findTripO)
|| Seq(selHotelO,findTripO) || Seq(selCarO,findTripO)
|| Seq(confI,makeResI) || Seq(makeResO, confO)).

Automated Mediator Synthesis 11

4.2 Synthesising a Mediator as a Quotient

Having derived the ordering constraints implicitly encoded in the ontology (rep-
resented by the observer component B), we can formulate the synthesis problem
as the problem of performing a quotient operation. We begin by constructing a
goal component G that first performs any sequence of non-X actions of P and
Q, and thereafter perform a X action before becoming quiescent. The goal G,
which can automatically be generated from the syntax of P and Q, is shown
in Figure 6. The synthesis problem involves finding a most general mediator M

X

AP ∪ AQ

AP AQ

X

Fig. 6. Component representing the goal G

such that P || M || Q || B v G. Note that the process G has all actions of P
and Q as outputs. This means that each input action of either P or Q must
be an output action of M, implying that P || M || Q has no input actions
(i.e., is a closed system). If such a mediatorM exists, it is equal to the quotient
G/(P || Q || B), for which it can be shown that requirements G1–G3 hold:

G1 is guaranteed by the fact thatM being defined implies that P || M || Q || B
is defined. Hence P || M || Q cannot enter an incompatible state.

G2 is satisfied since G can only become quiescent after having seen X, which
means that P || M || Q || B can only become quiescent after having seen
X. Consequently, P || M || Q can only deadlock when all components have
terminated successfully.

G3 is satisfied for the following reason. The data flow constraints are satisfied
since B will generate an inconsistency whenever the sequence of actions does
not satisfy them. This implies P || M || Q will never produce any action
that violates the constraints on occurrences of actions expressed by B.

Remark. Our methodology has considered the case where P || M || Q is modeled
as a closed system. In the case where P || M || Q is an open system and we
have a model E of its environment, we can use the same technique by finding a
mediatorM such that P || M || Q || B || E v G, where we assume that E is just
another component.

Travel agency example. The mediator for the packaged holiday example is
shown in Figure 7. Its inputs are the outputs of EUService || USClient and
its outputs are the inputs of EUService || USClient. The main idea is that the
mediator first intercepts the output produced by USClient from the findTripI ac-
tion, transforms it into the equivalent actions for EUService (selHotelI, selFlightI
and selCarI), and then sends them to EUService (also respecting the constraint

12 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

selHotelO selHotelO selHotelO selHotelO selHotelO

selHotelI selHotelI selHotelI selHotelI selHotelI

selF lightI

selF lightI

selF lightI

selF lightO

selF lightO

selF lightO

selCarI

selCarI

selCarI

selCarO

selCarO

selCarOfindTripI

findTripO confI

makeResI

makeResO

confO

X

findTripO confO selF lightI selHotelI selCarI makeResI X

findTripI confI selF lightO selHotelO selCarO makeResO

Fig. 7. The mediator for the travel agency example

that selFlightO must be sent before selCarI). Upon reception of the correspond-
ing responses selHotelO, selFlightO and selCarO from EUService, the mediator
forwards the expected output action findTripO to USClient. The process then
evolves in a similar manner for confirmation of the reservation.

5 Implementation

We implemented the synthesis approach defined in this paper as a prototype tool
available at http://www.rocq.inria.fr/arles/software/onto-quotient/.
The Pellet reasoner7 is used to build the hierarchy of concepts in the ontology
and extract all the subsumption relations. The problem of inferring ordering
constraints is formalised as a constraint satisfaction problem, which we solve
efficiently using the Choco8 constraint solver. In a second step, we generate the
behavioural model of the observer B based on the generated ordering constraints,
compute the goal specification as shown in Fig. 6, and calculate the quotient.
It should be noted that even though B and G are always of a similar shape
(since they are automatically generated), the implementation allows for arbitrary
behavioural models to be used as observer and goal specifications.

In order to enable the components to interoperate, the synthesised behavioural
model of the mediator needs to be concretised and deployed into a concrete arte-
fact so as to realise the specified translations and coordination. This artefact is
called emergent middleware [BBG+11]. The emergent middleware concretises
the mediator model by incorporating information about underlying network lay-
ers. In particular, the emergent middleware: (i) intercepts the input messages,
(ii) parses them so as to abstract from the communication details and represent
them in terms of actions as expected by the mediator, (iii) performs the neces-
sary data transformations, and (iv) uses the transformed data to construct an
output message in the format expected by the interacting component. This is
performed using specific parsers and composers, which are generated based on

7 http://clarkparsia.com/pellet/
8 http://choco.emn.fr/

http://www.rocq.inria.fr/arles/software/onto-quotient/
http://clarkparsia.com/pellet/
http://choco.emn.fr/

Automated Mediator Synthesis 13

existing libraries associated with the network communication protocols. In the
case of the travel agency example, we used the wsimport9 library to parse and
compose the messages.

Apart from the travel agency example, we experimented with our approach on
a number of case studies defined within the EU FP7 Connect project [Con12b].
These use cases mainly focus on enabling interoperability between heterogeneous
systems from different countries in a cross-border emergency situation. The ser-
vices are embedded within the GMES (Global Monitoring for Environment and
Security) context, which gives rise to a common domain ontology comprising the
concepts relevant in the considered emergency situations. For the sake of brevity,
we refer to [Con12b] for a more elaborate description on the domain ontology
and the systems involved.

In all the considered examples, we were able to generate a mediator automat-
ically by means of quotient. The quotient could be computed virtually without
any delay, even though in our prototype implementation we merely focused on
functionality. We are thus confident that our approach will scale well even when
applied to more complex case studies, which we are planning to evaluate as
future work.

6 Related Work

Pioneering work on mediator synthesis involves the use of formal methods for
protocol conversion, given behavioural models of the participating components.
Existing approaches for the synthesis of protocol converters require a specifi-
cation of the service delivered by the composed system. Lam [Lam88] assumes
a declarative specification of a common protocol to which both protocols can
be abstracted, which presupposes an intuitive understanding of the protocols
to be mediated. Calvert and Lam [CL90] propose a quotient operation for me-
diating communication protocols, which is related to, but different from, our
quotient operation. They require a global specification of the composed system,
which makes it difficult to apply automated mediator synthesis at run-time. A
quotient operation for deterministic interface automata has been presented by
Bhaduri and Ramesh [BR08]. Our quotient extends this definition by considering
also quiescence (deadlock) properties.

To improve the automation of mediator synthesis, Yellin and Strom [YS97]
define an algorithm to generate mediators automatically assuming that there
exist one-to-one correspondences between their actions, which have to be pro-
vided by the developer. Bertoli et al. [BPT10] also assume the correspondence
to be given and use a planning-based algorithm to generate the mediator.
Bersani et al. [BCF+10] define an approach based on SMT-based model check-
ing but assume that the protocols have the same alphabet. Finally, Inverardi
and Tivoli [IT13] adopt a compositional approach where the mediator is gener-
ated based on pre-defined patterns of translations, which have to be given by
the developer. Common to all the aforementioned methods is the assumption of

9
http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

14 Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

a priori knowledge about the components to be mediated and hence the cor-
respondence between their actions must be provided beforehand by developers
using their intuitive understanding of the application domain.

The emergence of the Semantic Web has led to the use of ontologies in system
integration as a means of interpreting the meaning of data or associated services
as they are dynamically encountered in the World-Wide Web. The Web Service
Execution Environment (WSMX) [CM05] provides a framework to mediate in-
teractions between heterogeneous Web Services by inspecting their individual
protocols and performing the necessary translation using predefined mediation
patterns. However, the composition of these patterns is not considered, and there
is no guarantee of deadlock-freeness. Vacuĺın et al. [VNS09] synthesise mediators
between a client and a service specified as OWL-S processes by generating all
the traces of the client protocol and finding the appropriate mapping for each
trace by simulating the service protocol.

In this paper, we define an approach that extends and improves existing
work on mediator synthesis by using ontologies to reason about the domain and
automatically infer the correspondence between the actions of the components
involved. This removes the need for a declarative specification of the global
system or the assumption that the components share the same alphabet.

7 Discussion and Evaluation

We have devised a methodology for synthesising mediators to support the in-
teroperability of components. Unlike existing techniques, we make use of an
ontology that relates the functional behaviour of the components, meaning that
the components do not have to share similar communication alphabets. The
synthesis technique is automated in the sense that the user does not need to
specify what the mediator should do, as this can be inferred using behavioural
and ontological reasoning. The synthesis is performed by means of a quotient
operation, which has received renewed interest in the literature recently. The
synthesised mediators are free of communication mismatches, and by considera-
tion of quiescence are guaranteed not to deadlock prematurely or inopportunely.

As a matter of simplicity, we have shunned away from components exhibiting
non-determinism and hidden transitions, although our theory can support these
by using the definitions of parallel composition and quotient in [CCJK12]. Future
work includes incremental re-synthesis of mediators so as to respond efficiently
to changes in the individual components or in the ontology.

Acknowledgements. This work is carried out as part of the European FP7 ICT
FET Connect project (http://connect-forever.eu/). The last author was sup-
ported in part by the UPMARC centre of excellence.

References

BBG+11. G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny, V. Nund-
loll, and Massimo Paolucci. The role of ontologies in emergent mid-

Automated Mediator Synthesis 15

dleware: Supporting interoperability in complex distributed systems. In
Proc. Middleware, pages 410–430, 2011.

BCF+10. M.M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, and M. Rossi. SMT-
based verification of ltl specification with integer constraints and its ap-
plication to runtime checking of service substitutability. In Proc. SEFM,
pages 244–254. IEEE, 2010.

BCM+03. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Schneider.
The Description Logic Handbook. Cambridge University Press, 2003.

BPT10. P. Bertoli, M. Pistore, and P. Traverso. Automated composition of web
services via planning in asynchronous domains. Artificial Intelligence,
174(3-4):316–361, 2010.

BR08. Purandar Bhaduri and S. Ramesh. Interface synthesis and protocol con-
version. Form. Asp. Comput., 20(2):205–224, March 2008.

CCJK12. T. Chen, C. Chilton, B. Jonsson, and M. Kwiatkowska. A compositional
specification theory for component behaviours. In ESOP, volume 7211 of
LNCS, pages 148–168, 2012.

CL90. K. L. Calvert and S. S. Lam. Formal methods for protocol conversion.
IEEE Journal on Selected Areas in Communications, 8(1):127–142, 1990.

CM05. E. Cimpian and A. Mocan. WSMX process mediation based on chore-
ographies. In Proc. of Business Process Management Workshop, pages
130–143, 2005.

CMS+09. J. Cámara, J. Mart́ın, G. Salaün, J. Cubo, M. Ouederni, C. Canal, and
E. Pimentel. ITACA: An integrated toolbox for the automatic composi-
tion and adaptation of web services. In ICSE, pages 627–630, 2009.

Con12a. Connect Consortium. Deliverable D3.4: Dynamic Connector Synthe-
sis: Principles, Methods, Tools and Assessment. FET IP Connect EU
project., 2012. http://hal.inria.fr/hal-00805618.

Con12b. Connect Consortium. Deliverable D6.4: Assessment report: Experiment-
ing with CONNECT in Systems of Systems, and Mobile Environments.
FET IP Connect EU project., 2012. http://hal.inria.fr/hal-00793920.

dAH01. L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT Softw.
Eng. Notes, 26(5):109–120, September 2001.

Gru93. T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, June 1993.

IT13. P. Inverardi and M. Tivoli. Automatic synthesis of modular connectors
via composition of protocol mediation patterns. In ICSE, 2013. to appear.

Lam88. S. Lam. Protocol conversion. IEEE Transaction Software Engineering,
14(3):353–362, 1988.

MHS+12. M. Merten, F. Howar, B. Steffen, P. Pellicione, and M. Tivoli. Automated
inference of models for black box systems based on interface descriptions.
In ISOLA, volume 7609 of LNCS, pages 79–96, 2012.

PdAHSV02. R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L. Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis: two faces
of the same coin. In Proc. IEEE/ACM Int. Conf. on Computer-aided
Design, pages 132–139. ACM, 2002.

VNS09. R. Vacuĺın, R. Neruda, and K. P. Sycara. The process mediation frame-
work for semantic web services. International Journal of Agent-Oriented
Software Engineering, IJAOSE, 3(1):27–58, 2009.

YS97. D. M. Yellin and R. E. Strom. Protocol specifications and component
adaptors. ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

	Automated Mediator Synthesis: Combining Behavioural and Ontological Reasoning

