
Local Abstraction Refinement
for Probabilistic Timed Programs

Klaus Drägera, Marta Kwiatkowskaa, David Parkerb, Hongyang Qua

aDepartment of Computer Science, University of Oxford, Oxford, UK
bSchool of Computer Science, University of Birmingham, Birmingham, UK

Abstract

We consider models of programs that incorporate probability, dense real-time
and data. We present a new abstraction refinement method for computing min-
imum and maximum reachability probabilities for such models. Our approach
uses strictly local refinement steps to reduce both the size of abstractions gen-
erated and the complexity of operations needed, in comparison to previous ap-
proaches of this kind. We implement the techniques and evaluate them on a
selection of large case studies, including some infinite-state probabilistic real-
time models, demonstrating improvements over existing tools in several cases.

Keywords: Probabilistic verification, Abstraction refinement

1. Introduction

Abstraction refinement is a highly successful approach to the verification of
complex infinite-state systems. The basic idea is to construct a sequence of in-
creasingly precise abstractions of the system to be verified, with each abstraction
typically over-approximating its behaviour. Successive abstractions are con-
structed through a process of refinement which terminates once the abstraction
is precise enough to verify the desired property of the system under analysis.
Abstraction refinement techniques have also been used to verify probabilistic
systems [6, 11, 13, 7], including those with real-time characteristics [16, 17, 8]
and continuous variables [25]. Frequently, though, practical implementations of
these techniques are hindered by the high complexity of both the abstractions
involved and the operations needed to construct and refine them.

In this paper, we target the verification of programs whose behaviour incor-
porates both probabilistic and real-time aspects, and which include the manip-
ulation of (potentially infinite) data variables. We analyse systems modelled
as probabilistic timed programs (PTPs) [17], whose semantics are defined as
infinite-state Markov decision processes (MDPs). We introduce an abstraction
refinement procedure for computing minimum and maximum reachability prob-
abilities in PTPs. As in [6, 11], we use an MDP-based abstraction. This provides
outer bounds on reachability probabilities (i.e., a lower bound on the minimum
probability or an upper bound on the maximum). In addition, we compute

Preprint submitted to Elsevier April 12, 2013

dual, inner bounds, based on a stepwise concretisation of adversaries of this
abstract MDP, yielding upper and lower bounds on minimum and maximum
probabilities, respectively. Concretisation is also used, for example, in [11], for
untimed models. The key difference in our work is that we aim to keep the
abstraction small by using local refinement and simplification operations, so as
to reduce the need for expensive operations such as Craig interpolation.

At the core of our approach is a refinement loop that repeatedly attempts
to construct a concrete adversary of the PTP. This is based on the exploration
of the part of the state space on which the current abstract adversary can
be concretised. In each exploration step, we may encounter an inconsistency,
in which case we derive a refinement operation and restart. Otherwise, we
numerically solve the constructed adversary, giving inner bounds on the desired
probability values. The refinement loop terminates once the difference between
upper and lower bounds is smaller than a specified threshold ε.

We implement our abstraction refinement approach, deploy it on various
large case studies, and compare to the probabilistic verification tools PRISM [18],
PASS [9] and FORTUNA [3], illustrating improved performance in many cases.
We are also able to verify probabilistic timed programs containing both real-time
behaviour and infinite data variables, which these tools cannot handle.

Related Work. Abstraction refinement for MDPs and related models is an
active research field. In [6], techniques were proposed for abstracting MDPs
using the notion of probabilistic simulation. Building on the same approach to
abstraction, [11] developed a probabilistic version of the classic counterexample-
guided abstraction refinement (CEGAR) method, which was then implemented
in the tool PASS [9]. This verifies a probability-bounded reachability property
using a refinement scheme based on probabilistic counterexamples and Craig
interpolation. In contrast to the implementation of [6], PASS uses predicate
abstraction, allowing it to analyse infinite-state models. More recent work [15]
proposes an alternative probabilistic CEGAR technique using stochastic tree
counterexamples; this applies to finite-state MDPs, on which properties are
specified using simulation rather than reachability. However, all three methods
[6, 11, 15] were applied to discrete-time models (MDPs), whereas our approach
generalises to models with real-time behaviour. We provide an experimental
comparison with PASS, for MDP models, in Sec. 4.

In [13], a quantitative abstraction refinement technique for MDPs was pro-
posed, using a different form of abstraction based on stochastic games. This
computes lower and upper bounds for reachability probabilities, the difference
between which determines if further refinement is needed. The framework of [13]
was subsequently applied to verification of C programs with probabilistic be-
haviour [12]. Later extensions to PASS also use game-based abstraction re-
finement [24]. In recent work [7], the abstraction frameworks of [13, 24] were
adapted to handle arbitrary abstract domains, illustrating cases where this can
outperform predicate abstraction. As for [6, 11, 15] above, though, these meth-
ods [13, 12, 24, 7] all focus on models with a discrete notion of time.

Probabilistic timed automata (PTAs) are a subclass of the probabilistic

2

timed programs (PTPs) that we target in this paper, since only the latter allows
arbitrary (infinite) data variables. For PTAs, several verification techniques ex-
ist. Most relevant here is [16], which extends the abstraction refinement frame-
work of [13] mentioned above, to PTAs, by using zones to represent abstract
states. Other possibilities include the digital clocks discretisation [19] and back-
wards reachability [21]. The probabilistic model checker PRISM [18] supports
verification of PTAs, using either [16] or [19]. In [16], abstraction refinement was
shown to outperform the other available techniques. Subsequently, an optimised
version of backwards reachability, implemented in the tool FORTUNA [3], was
shown to exhibit superior performance on various examples. We compare the
performance of our approach to both PRISM and FORTUNA in Sec. 4.

Several PTA verification tools do support PTAs with data variables, but they
are required to be finite. This includes PRISM, discussed above, mcpta [10],
which translates the modelling language Modest to PRISM using [19], and UP-
PAAL PRO, which computes maximum reachability probabilities for PTAs by
progressively partitioning the state space into sets of zones.

The closest approaches to the one presented here are [17] and [8]. In [17], an
extension of the game-based abstraction refinement framework of [13] is defined
for PTPs, but not implemented. This defines abstractions as stochastic games,
rather than MDPs as in our approach. In recent work [8], PTPs (there called
variable-decorated PTAs) are verified using a combination of discretisation via
digital clocks [19] and predicate abstraction methods from PASS [24]. Our
approach avoids the use of discretisation by using zones and aims to improve
efficiency by using local refinement and simplification operations to reduce the
size of abstractions. The implementation of [8] is not currently available; we
give a brief, indirect comparison of results in Sec. 4.

2. Preliminaries

We assume a set V of variables, ranging over a domain D defined by a
theory T (linear integer arithmetic in our examples). We require satisfiability of
quantifier-free formulae in T to be decidable. The set of assertions over V, i.e.,
(conjunctive) quantifier-free formulae in T , is denoted by Asrt(V), and Val(V)
is the set of valuations of V, i.e., functions u : V → D. We use Assn(V) for
the set of assignments over V, given by a term rx for each x ∈ V. The result
of applying assignment f to a valuation u is f(u), given for each x ∈ V by
f(u)(x) = u(rx). Given an assignment f and an assertion ϕ, the composition
ϕ ◦ f is defined by (ϕ ◦ f)(u) ≡ ϕ(f(u)).

For a set S, we use P(S) to denote the set of subsets of S and D(S) for
the set of discrete probability distributions over S, i.e. finite-support functions
∆ : S → [0, 1] such that

∑
s∈S ∆(s) = 1. A distribution ∆ ∈ D(S) with support

{s1, . . . , sn} and ∆(sj) = λj will also be written λ1s1 + · · ·+ λnsn.

2.1. Clocks
We use a set X of clock variables to represent the time elapsed since the

occurrence of various events. The set of clock valuations is RX>0 = {v : X →

3

R>0}. For any clock valuation v and δ ∈ R>0, the delayed valuation v + δ is
defined by (v+δ)(x) = v(x)+δ for all x ∈ X . For a subset Y ⊆ X , the valuation
v[Y :=0] is obtained by setting all clocks in Y to 0, i.e., v[Y :=0](x) is 0 if x ∈ Y
and v(x) otherwise. The valuation 0 has all clocks set to 0.

A clock difference constraint over X is an upper or lower bound on either
a clock or the difference between two clocks. It is convenient to extend X
with a dedicated zero clock x0 which is always 0, so that all clock difference
constraints have the form x − y . b with x, y ∈ X0 := X ∪ {x0}, . ∈ {<,6}
and b ∈ Z∪ {±∞}. We define the complement c of a clock difference constraint
c as: c := y − x < −b if c ≡ x− y 6 b; and c := y − x 6 −b if c ≡ x− y < b.

A (convex) zone is the set of clock valuations satisfying a number of clock
difference constraints, and the set of all zones is Zones(X). We use several
standard operations on zones:

• future: ↗ ρ = {v + δ | v ∈ ρ, δ ∈ R>0} is the set of clock valuations
reachable from ρ by letting time pass;

• past: ↙ ρ = {v | v+δ ∈ ρ for some δ ∈ R>0} is the set of clock valuations
from which ρ can be reached by letting time pass;

• clock reset: if Y ⊆ X , then ρ[Y :=0] = {v[Y :=0] | v ∈ ρ} contains the
valuations obtained from ρ by setting the values of all y ∈ Y to 0;

• inverse reset: if Y ⊆ X , then [Y :=0]ρ = {v | v[Y :=0] ∈ ρ} contains the
valuations which end up in ρ if the values of all y ∈ Y are set to 0.

We will use one additional operation on clocks, for which we first require some
standard operations on pairs (b,.) ∈ R>0 × {<,6} (see [2]). The set {<,6} is
ordered by < / 6, and the set of pairs (b,.) by the lexicographic combination
≺ of <R and / , i.e. (b1, <) ≺ (b1,6) ≺ (b2, <) for all b1 < b2. The sum of two
pairs is then given by (b1,.1) + (b2,.2) := (b1 + b2,min/(.1,.2)).

Definition 1. Let ρ1, . . . , ρm be zones whose intersection ρ1∩· · ·∩ρm is empty.
An unsatisfiable core for ρ1, . . . , ρm is a set C of constraints such that:

(i) each constraint in C is implied by some ρk,

(ii) the conjunction of all constraints in C is unsatisfiable, and

(iii) C is minimal in the sense that no proper subset C ′ (C satisfies (ii).

An unsatisfiable core always exists, since the zones are given by finite sets of
constraints whose union U is unsatisfiable (otherwise the zones would have a
non-empty intersection), and the subsets of U satisfy the descending chain con-
dition. We can compute an unsatisfiable core with the following straightforward
generalisation of the Craig interpolation procedure for difference logic from [5].

For all i, j, let (bij ,.ij) be the least pair for which cij ≡ xi − xj .ij bij is
implied by some ρk. Note that the conjunction of the cij is unsatisfiable. This
means that, if we label the edges of the complete directed graph on X0 with the

4

pairs (bij ,.ij), then there is a cycle with a negative label sum [2]; using the
Floyd-Warshall algorithm, we can find a shortest such cycle (i1, . . . , ik).

The constraints along this cycle are xij−1−xij .ij−1ij bij−1ij for j = 1, . . . , k,
where i0 = ik; the label sum (b,.) being negative means that summing the
constraints results in an unsatisfiable implied constraint 0 . b. On the other
hand, removing one of the constraints (w.l.o.g., we can assume it is the first one)
gives a path whose associated constraints are satisfied by any clock valuation t
of the form v(xij) = a + bi1i2 + · · · + bij−1ij for some large enough a. So the
constraints along the cycle form an unsatisfiable core.

2.2. Markov Decision Processes (MDPs)
The underlying semantics for the models studied in this paper is defined in

terms of Markov decision processes (MDPs), a standard model for systems with
both probability and nondeterminism. An MDP is a tuple (S, si, Se, T), where
S is a (possibly infinite) set of states, si ∈ S is the initial state, Se ⊆ S is a set
of error states and T : S → P(D(S)) is a probabilistic transition function. In a
state s ∈ S, the choice of a successor distribution ∆ ∈ T (s) is nondeterministic
and a successor state is then selected probabilistically according to ∆.

An adversary for an MDP resolves the nondeterminism in each state, based
on the current history, i.e., it is a function σ : S+ → D(S) such that σ(s1 . . . sl) ∈
T (sl) for any path s1 . . . sl. The adversary is memoryless if σ depends only on
sl; it can then be written as a function σ : S → D(S). The behaviour of an MDP
M under a particular adversary σ can be viewed as a (possibly infinite-state)
Markov chain. This allows us to define, in standard fashion [14], a probability
space PrσM,s over the set of all (infinite) paths1 from a given state s of M .

In this paper, we focus on one kind of property: the error probability pσM,s =
PrσM,s({s1s2 . . . |s1=s and sj∈Se for some j}), i.e., the probability of reaching
one of M ’s designated error states. In particular, we aim to compute the min-
imum error probability pmin

M,s = inf{pσM,s |σ is an adversary of M} or the maxi-
mum error probability pmax

M,s = sup{pσM,s |σ is an adversary of M}. Probabilities
from the initial state si of the MDP are denoted by omitting the subscript si,
i.e. pσM = pσM,si

, pmin
M = pmin

M,si
, and pmax

M = pmax
M,si

.

2.3. Probabilistic Timed Programs (PTPs)
The systems we will verify are probabilistic timed programs (PTPs) [17],

which can be thought of as MDPs extended with state variables and real-valued
clocks (or as probabilistic timed automata with state variables). For simplicity,
we assume that a PTP contains an initial location which must be left immedi-
ately and never re-entered, and an error location which cannot be left. We also
make the common assumption that models are structurally non-Zeno [23].

Definition 2 (PTP). A PTP is a tuple P = (L,V,X , li, ui, le, I, T) where:

1The MDPs in this paper are infinite state due to the use of both unbounded data and
dense real-time; see e.g. [20] for a discussion of how to ensure measurability for such models.

5

• L is a finite set of locations and li, le ∈ L are initial and error locations;

• V is a finite set of state variables and ui ∈ Val(V) is the initial valuation;

• X is a finite set of clocks and I : L→ Zones(X) is the invariant condition,
where we assume I(li) = {0};

• T : L→ P(Trans(L,V,X)) is the probabilistic transition function, where
Trans(L,V,X) = Asrt(V)×Zones(X)×D(Assn(V)×P(X)×L).

A (concrete) state of a PTP P is a triple q = (l, u, v) ∈ L×Val(V)× RX>0 such
that v ∈ I(l). The set of all states is denoted Qc(P), or Qc if P is clear from
the context. The initial state is qi = (li, ui,0), and the set of error states is
Qe = {(le, u, v) | v ∈ I(le)}. A step of the PTP from state (l, u, v) consists
of some delay δ > 0 followed by a transition (G, E ,∆) ∈ T (l). The transition
comprises a guard G, enabling condition E and probability distribution ∆ =
λ1(f1, r1, l1)+ · · ·+λk(fk, rk, lk) over triples containing an update fj ∈ Assn(V),
clock resets rj ⊆ X and target location lj ∈ L.

The delay δ must be chosen such that the invariant I(l) remains continuously
satisfied; since I(l) is a (convex) zone, this is equivalent to requiring that both
v and v + δ satisfy I(l). The chosen transition must be enabled, i.e., the guard
G and the enabling condition E must be satisfied by u and v + δ, respectively.
An assignment, set of clocks to reset and successor location are then selected at
random, according to the distribution ∆.

Formally, the semantics of PTP P is given by an MDP [[P]] = (Qc, qi, Qe, T)
where λ1(l1, u1, v1)+ · · ·+λk(lk, uk, vk) ∈ T (l, u, v) if and only if there are δ > 0
and (G, E , λ1(f1, r1, l1) + · · · + λk(fk, rk, lk)) ∈ T (l) such that: (i) u � G; (ii)
v + δ ∈ I(l) ∩ E ; (iii) uj = fj(u) for all j; and (iv) vj = (v + δ)[rj :=0] ∈ I(lj)
for all j. Thus, any adversary σ : Q+

c → D(Qc) of [[P]] is induced by two
functions δσ : Q+

c → R>0 and τσ : Q+
c → Trans(L,V,X) such that δσ(wq) and

τσ(wq) ∈ T (l) satisfy (i)-(iv) for all w ∈ Q∗c and q = (l, u, v).
Our focus in this paper is determining the minimum or maximum probabil-

ity of reaching an error state in PTP P , denoted pmin
P and pmax

P , respectively.
These are defined as the values pmin

[[P]] and pmax
[[P]] for its MDP semantics [[P]]. We

determine the desired value up to a given precision ε > 0 by producing lower
and upper bounds plb,min

P 6 pmin
P 6 pub,min

P or plb,max
P 6 pmax

P 6 pub,max
P which

differ by at most ε.

Example 1. Fig. 1 (left) shows an example PTP with integer variable c and
clocks x, y. Guards (e.g. c>0), enabling conditions (e.g. x<1), resets (e.g. x:=0)
and probabilities (e.g. 1

2) label transitions; invariants (true) label locations.

3. Abstraction Refinement for PTPs

We now introduce our abstraction refinement approach for PTPs, which
we call local abstraction refinement. Our abstractions are based on MDPs and
yield both lower and upper bounds on the desired probability. The outer bound

6

li
true

l1,
true

l2,
true

l3,
true

le,
true

c, x, y := 0

x < 1
y > 3

c−−

1
2c++

1
2

1
2

c++

1
2

x := 0

c > 0

x < 1

1
2

c−−

1
2

li,true,true
ni 1

l1,true,true
n1 1

l2,true,true
n3 0

l3,true,true
n3 1

le,true,true
ne 1

c, x, y := 0

x < 1
y > 3

c−−

1
2c++

1
2

1
2

c++

1
2

x := 0

c > 0

x < 1

1
2

c−−

1
2

Figure 1: Left: an example PTP P . Right: initial abstraction Ai(P), labelled with node ids
and upper probability bounds, and with abstract adversary σa marked in bold

(plb,min
P or pub,max

P) is obtained from an adversary σa on the abstract MDP
(which overapproximates the choices available to concrete adversaries), while
the inner bound (pub,min

P or plb,max
P) is based on a partial concretisation of σa.

In the next section, we describe the basic ideas underlying our abstractions;
in subsequent sections, we describe in more detail how to generate suitably
precise abstractions using a refinement loop. Throughout, we will assume a
fixed PTP P = (L,V,X , li, ui, le, I, T) with semantics [[P]] = (Qc, qi, Qe, T).

3.1. MDP Abstractions
The abstraction for a PTP P in our approach is an MDP, which, for conve-

nience, we augment with concretisation information.

Definition 3 (MDP abstraction). For a probabilistic timed program P , an
abstract state (or node) is a triple n = (l, ϕ, ρ) ∈ L×Asrt(V)× Zones(X). We
use Qa(P) to denote the set of all abstract states. An MDP abstraction is a
tuple A = (N,ni, Ne, T), where:

• N ⊆ Qa(P) is a finite set of nodes, ni ∈ N is the initial node, and Ne ⊆ N
the set of error nodes;

• T : N→P(Trans(N,V,X)) maps nodes to finite sets of abstract transi-
tions in Trans(N,V,X) = Asrt(V)×Zones(X)×D(Assn(V)×P(X)×N).

The set of dead nodes from which Ne is not reachable is denoted by Nd.

In order to formalise the relationship between an MDP abstraction A and its
corresponding PTP P , we introduce the notion of reflections. Recall from the
definition of [[P]] that any adversary σ is induced by functions δσ : Q+

c → R>0

and τσ : Q+
c → T , such that, for wq ∈ Q+

c with q = (l, u, v) and τσ(wq) =
(G, E , λ1(f1, r1, l1) + · · ·+ λk(fk, rk, lk)), we get σ(wq) = λ1q1 + · · ·+ λkqk with
qj = (lj , fj(u), (v + δσ(wq))[rj := 0]). A reflection captures the idea that every
concrete adversary can be simulated in an abstraction; if, in addition, every
transition in the abstraction represents a special case of a concrete transition,
we call this abstraction sound.

7

Definition 4 (Reflection). Let A = (N,ni, Ne, T) be an MDP abstraction
for P . A reflection of adversaries for A is a map ∇ : Q+

c × R>0 → N with the
following properties:

• ∇(wq, δ) = ni iff q = (li, ,) and ∇(wq, δ) ∈ Ne iff q ∈ Qe;

• for any adversary σ of [[P]], let ∇σ : Q+
c → N be the reflection of σ,

defined as ∇σ(w) = ∇(w, δσ(w)).

Then for any path w ∈ Q+
c , where σ(w) = λ1q1 + · · · + λkqk is induced

by δσ(w) and τσ(w) = (G, E , λ1(f1, r1, l1) + · · · + λk(fk, rk, lk)), there are
G′, E ′ such that the set T (∇σ(w)) contains an abstract transition of the
form (G′, E ′, λ1(f1, r1,∇σ(wq1)) + · · ·+ λk(fk, rk,∇σ(wqk))).

The need to have a delay as an extra argument arises from the behaviour
of refinement with respect to clock constraints (see Sec. 3.4). The delay is
effectively a prophecy variable [1] representing the next decision of the adversary.
This dependency means, in particular, that we do not have a straightforward
simulation relation between concrete and abstract states; the reflection allows
us, however, to construct a simulation for each concrete adversary (see Thm. 1).

Definition 5 (Concretisable transitions). LetA=(N,ni, Ne, T) be an MDP
abstraction for P . A has concretisable transitions if, for each node n = (l, ϕ, ρ) ∈
N and abstract transition τ = (G, E , λ1(f1, r1, n1)+ · · ·+λk(fk, rk, nk)) ∈ T (n),
where nj = (lj , ϕj , ρj) for all j, the PTP P contains a concrete transition
(G′, E ′, λ1(f1, r1, l1) + · · ·+ λk(fk, rk, lk)) ∈ T (l) with G ⇒ G′ and E ⊆ E ′.

Definition 6 (Sound abstraction). An MDP abstraction A for PTP P is
sound if it has a reflection of its adversaries and concretisable transitions.

All our abstractions will be sound and have the following additional property.

Definition 7 (Tight abstraction). An MDP abstraction A is tight if, for ev-
ery abstract transition (G, E , λ1(f1, r1, n1) + · · ·+ λk(fk, rk, nk)) ∈ T (n), where
n = (l, ϕ, ρ) and nj = (lj , ϕj , ρj) for all j, we have E ⊆ ρ, and G, E ensure
validity of all successors, i.e. G ⇒ ϕj ◦ fj and E ⊆ [rj := 0]ρj for all j.

The significance of these properties is as follows. Soundness allows us to
obtain correct bounds, while tightness ensures progress. Specifically, a reflection
of adversaries ensures that the reachability probabilities in the MDP underlying
A yield correct outer bounds plb,min

P := pmin
A and pub,max

P := pmax
A (see Thm. 1)

while concretisability of transitions means that we obtain correct inner bounds
by partially concretising an abstract adversary (see Thm. 3). Tightness ensures
that each refinement step is a proper refinement, in the sense that each node
obtained by splitting a node n either satisfies stronger constraints than n or has
stronger enabledness conditions on its outgoing transitions (see Thm.s 4 and 5).

Theorem 1. If A is a sound MDP abstraction for PTP P , then pmin
A 6 pmin

P

and pmax
A > pmax

P .

8

Proof. Let A = (N,ni, ne, T) be an MDP abstraction for P with a reflection
of adversaries ∇ : Q+

c × R>0 → N , and let σ be an arbitrary adversary of
[[P]]. Consider the MDP M = (Q+

c , qi, {wq ∈ Q+
c | q ∈ Qe}, T ′) with the

singleton transition sets T ′(w) = {λ1(wq1) + · · · + λk(wqk)} obtained from
σ(w) = λ1q1 + · · · + λkqk for all w. This is essentially the DTMC induced by
[[P]] and σ, and satisfies pmin

M = pmax
M = pσ[[P]].

By the assumption that li cannot be revisited, all reachable states of M
lie in qiQ

∗
r , where Qr = (L \ {li}) × Val(V) × RX>0. Consider the relation

R := {(wq,∇σ(q)) | wq ∈ qiQ∗r}. From the definition of ∇, we have that, for
all (w, n) ∈ R, w = qi iff n = ni, w ∈ Qe iff n ∈ Ne, and T (∇σ(w)) contains
an abstract transition (G′, E ′, λ1(f1, r1,∇σ(wq1)) + · · · + λk(fk, rk,∇σ(wqk)))
corresponding to the sole transition λ1(wq1)+ · · ·+λk(wqk) in T ′(w), such that
(wqj ,∇σ(wqj)) ∈ R for all j. Thus, R is a probabilistic simulation, and we get
pmin
A 6 pmin

M 6 pσ[[P]] and pmax
A > pmax

M > pσ[[P]] [6]. Since the argument works for
arbitrary σ, we also get pmin

A 6 pmin
[[P]] = pmin

P and pmax
A > pmax

[[P]] = pmax
P . �

To build abstractions for PTPs, we start with an initial abstraction, which is
defined as follows.

Definition 8 (Initial abstraction). For a location l of PTP P , let nl denote
the abstract state (l, true, I(l)). The initial abstraction for P is the MDP ab-
straction Ai(P) := ({nl | l ∈ L}, nli , {nle}, T) where: T (nl) = {αl(τ) | τ ∈ T (l)}
and αl(G, E , λ1(f1, r1, l1) + · · · + λk(fk, rk, lk)) = (G, E ′, λ1(f1, r1, nl1) + · · · +
λk(fk, rk, nlk)) with E ′ = I(l) ∩ E ∩

⋂
j [rj := 0]I(lj).

Theorem 2. The initial abstraction Ai(P) for PTP P is sound and tight.

Proof. Let Ai(P) = ({nl | l ∈ L}, nli , {nle}, T). We define ∇ : Q+
c ×R>0 → N

by ∇(wq, δ) = nl for q = (l, v, t). Clearly, ∇ maps (wq, δ) to nli iff l = li,
and to nle iff q ∈ Qe. Let σ be an adversary of [[P]] induced by the delays
δσ(q) and transitions τσ(q) as defined in Defn. 4. Then, for each w ∈ Q∗c and
q = (l, v, t), ∇σ(wq) = nl and, by the definition of Ai(P), T (nl) contains the
abstract transition αl(τσ(wq)) = (G, E ′, λ1(f1, r1, nl1) + · · ·+ λk(fk, rk, nlk)) for
τσ(wq) = (G, E , λ1(f1, r1, l1)+· · ·+λk(fk, rk, lk)). Altogether, this means that∇
is a reflection of adversaries and, since concretisability of transitions is ensured
by the obvious mapping of αl(τ) to τ , the initial abstraction Ai(P) is sound.

Tightness is achieved by using the strengthened enabledness condition E ′ in
αl(τ) (since all state assertions are true, G does not need to be changed). �

To extract the complementary (inner) bound pub,min
P or plb,max

P from an MDP
abstraction A, we will need the notion of a (memoryless) abstract adversary,
which selects an outgoing transition from each node n of A. In practice, we ob-
tain such an adversary when computing the extremal reachability probabilities
pmin
A,n or pmax

A,n for each node n in A.

Definition 9 (Abstract adversary). An abstract adversary for an MDP ab-
straction A=(N,ni, Ne, T) is a function σa : N → Trans(N,V,X) such that
σa(n) ∈ T (n) for all n ∈ N .

9

Example 2. Fig. 1 (right) shows the initial MDP abstraction Ai(P) for PTP
P from Ex. 1 (Fig. 1, left), for which we want to determine the maximum error
probability. The top of each box shows the abstract state (node); underneath
is (to the left) a node id and (to the right) the computed maximum probability
of reaching error node ne. A corresponding adversary σa is indicated in bold.

An abstract adversary resolves the nondeterminism in the MDP, giving a
discrete-time Markov chain which will allow us to compute pub,min

P or plb,max
P .

More precisely, we build a (partial) concretisation, based on a forward explo-
ration through the model. We explore the Markov chain induced by σa using
discrete states s = (n, u) consisting of a node n = (l, ϕ, ρ) of A and a valuation
u with u � ϕ. Interleaved with these forward exploration steps, we perform
backwards propagation of time constraints, starting with the invariants of the
newly expanded successor states, which are then iteratively strengthened. We
formalise this as follows.

Definition 10 (Concretisation). A (partial) concretisation of an abstract
adversary σa is a tuple C = (S,O,E), consisting of:

• a set S ⊆ N × Val(V) of discrete states s = (n, u), with a subset O ⊆ S
of open states whose successors still have to be explored;

• a set E of edges e = (s, λ, r, s′), representing edges of the adversary transi-
tions, with the associated probability λ and resets r. For a state s = (n, u),
Es ⊆ E is the set of edges with source s. We have:

– Es = ∅ if s ∈ O or n ∈ Nd ∪Ne is a dead or error node;

– otherwise, Es = {(s, λj , rj , (nj , fj(u))) | 1 6 j 6 k} based on the
edges in σa(n) = (G, E , λ1(f1, r1, n1) + · · ·+ λk(fk, rk, nk)).

We denote by S = {s ∈ S | Es 6= ∅} the set of expanded states in C.

Every partial concretisation induces time constraints η : (S ∪ E) → Zones(X)
and bounds π0, π1 : S → [0, 1] on reachability probabilities as follows.

• Let the zones η(s), η(e) for states s and edges e be the greatest solutions
to the fixpoint equations:

– for all s = (n, u) with n = (l, ϕ, ρ): η(s) = ρ ∩ ↙ (ρ ∩
⋂
e∈Es

η(e))

– for each e = (s, λ, r, s′) with s = (n, u), σa(n) = (G, E ,∆):
η(e) = E ∩ [r := 0]η(s′).

• The probability bounds πb(s) for b ∈ {0, 1} are the least solutions to:

– πb(n, u) = 1 for n ∈ Ne an error node,

– πb(n, u) = 0 for n ∈ Nd a dead node,

– πb(s) = b for s ∈ O, and

– πb(s) =
∑

(s,λ,r,s′)∈E λ · πb(s′) otherwise (i.e. for s ∈ S).

10

The idea of this construction is that a partial concretisation whose associated
time constraints are satisfiable represents a portion of the model on which the
abstract adversary’s chosen transitions can be consistently followed by a con-
crete adversary; π0(ni, ui) and π1(ni, ui) then give a lower bound and an upper
bound on pσP for any adversary σ doing so.

We can therefore use the probability bounds πb from the concretisation of
a maximising or minimising abstract adversary to determine inner bounds, i.e.,
we take plb,max

P := π0(ni, ui) or pub,min
P := π1(ni, ui).

In order to formalise this, we first define some auxiliary sets capturing the
relationship between concrete and discrete states. For s = (n, u) ∈ S, with
n = (l, ϕ, ρ), we let Qs = {(l, u, v) ∈ Qc(P) | v ∈ η(s)} and define QS = ∪s∈SQs
and QS = ∪s∈SQs; for q ∈ Qc(P), Sq = {s∈S | q∈Qs} and Sq = {s∈S | q∈Qs}.

We then say that a concrete adversary σ for P follows the partial concreti-
sation C = (S,O,E) if there is a map s : Q+

S → S such that, for each
path w = w1 . . . wm ∈ Q+

S , if wm ∈ QS and σ(w) = λ1q1 + · · · + λkqk, then
Es(w) = {(s(w), λj , rj , s(wqj)) | 1 6 j 6 k} for some r1, . . . , rk ⊆ X .

Theorem 3. Let C = (S,O,E) be a partial concretisation for adversary σa of
A, such that all zones η(s) for s ∈ S and η(e) for e ∈ E are non-empty. Then:

1. there exists a concrete adversary σ following C;

2. for any such σ, we have π0(ni, ui) 6 pσP 6 π1(ni, ui).

Proof. 1. Let w = w1 . . . wm ∈ Q+

S
with wm = (l, u, v). Let s(w) be (n, u) ∈

Swm
with n = (l, ϕ, ρ) (chosen arbitrarily if |w| = 1) and let the abstract adver-

sary’s chosen transition be σa(n) = (G, E , λ1(f1, r1, n1) + · · · + λk(fk, rk, nk)),
where nj = (lj , ϕj , ρj). Since s(w) ∈ Swm , we have that v ∈ η(s(w)) =
ρ ∩ ↙ (ρ ∩

⋂
e∈Es(w)

η(e)). Therefore, there exists some δ ∈ R>0 such that
v + δ ∈ ρ ∩

⋂
e∈Es(w)

η(e) (and v + ε ∈ ρ for all 0 6 ε 6 δ, since ρ is convex).
By concretisability of transitions, there is a corresponding concrete transition

τ ′ = (G′, E ′, λ1(f1, r1, l1) + · · ·+ λk(fk, rk, lk)) with G ⇒ G′ and E ⊆ E ′. Due to
the above, a concrete adversary can choose this concrete transition after a suit-
able delay δ, getting the distribution λ1q1 + · · ·+λkqk, where qj = (lj , fj(u), vj)
with vj = (v + δ)[rj := 0]. The edges in Es are ej = (s(w), λj , rj , sj), where
sj = (nj , fj(u)); since δ was chosen such that v + δ ∈ η(ej) = E ∩ [rj := 0]η(sj)
for all j, we get vj ∈ η(sj), and thus sj ∈ Sqj

, so we can choose s(wqj) = sj .
Iterating this argument, we get a concrete adversary following C.

2. Let σ be a concrete adversary following C, w = w1 . . . wm be any path
within QS in the Markov chain induced by P and σ, and s1, . . . , sm be the cor-
responding path in the Markov chain (S, TS) represented by C (with transitions
T (s) = λ1s1 + · · · + λksk for Es = {(s, λj , rj , sj) | 1 6 j 6 k}). By the above
correspondence, the paths have equal probabilities. From the soundness of the
abstraction, we get a correspondence regarding reachability of the error:

• sm = (n, u) is an error state (n ∈ Ne) iff qm is an error state (qm ∈ Qe);

11

(ni, true)
π0 = 0 true

(n1, c = 0)
π0 = 0 true

(n3, c = 0)
π0 = 0 true

(n3, c = 1)
π0 = 0 true

(ni, true)
π0 = 1

4 x < 1
(n1, c = 0)
π0 = 1

4 x < 1

(n3, c = 0)
π0 = 0 true

(n3, c = 1)
π0 = 1

2 x < 1
(ne, c = 1)
π0 = 1 true

Figure 2: Two partial concretisations for the MDP abstraction of Fig. 1.

• if sm = (n, u) with n ∈ Nd, i.e. Ne is not reachable from n, then Qe is
likewise not reachable from qm;

• if sm ∈ O, then the error may be reachable from qm with any probability
in [0, 1] (we made no assumption on the behaviour of σ outside QS).

This implies that the reachability probabilities of Se = {(n, u) ∈ S | n ∈ Ne}
and of Se ∪O are a lower and an upper bound on pσP , and (see e.g. Thm. 1.3.2
in [22]) they are exactly the least solutions of:

• p(s) = 1 if s ∈ Se (resp. s ∈ Se ∪O), and

• p(s) =
∑
T (s)(s′)p(s′) otherwise,

making them equal to π0 and π1. �

Example 3. We return to the MDP abstraction and abstract adversary σa of
Ex. 2, shown in Fig. 1 (right). Fig. 2 (left) shows a partial concretisation. The
top of each box shows the discrete state; the bottom shows the lower probability
bound π0 (since we are computing maximum probabilities) and time constraint
η(s). Unexpanded states are drawn with dashed lines. For clarity, edge details
are omitted. Fig. 2 (right) shows a subsequent partial concretisation, expanding
state (n3, c = 1). The outgoing transition contains a time constraint x < 1,
which gets propagated backwards. One successor is error state (ne, c = 1),
leading to an increase in the lower bounds.

3.2. The Refinement Loop
Our approach to computing reachability probabilities for PTPs is based on

an iterative abstraction refinement loop, which generates increasingly precise
MDP abstractions. At each iteration, we first compute minimum or maximum
reachability probabilities for the MDP, yielding an (outer) bound plb,min or
pub,max and an abstract adversary. Then, we partially concretise this adversary,
based on a forward exploration through the model, yielding after each step
a complementary (inner) probability bound pub,min = π1(ni, ui) or plb,max =
π0(ni, ui). If the difference between the lower and upper bounds for the initial
state of the model falls below a pre-specified tolerance ε, then abstraction re-
finement terminates. Otherwise, concretisation continues until an inconsistency
is identified, which will be used to refine the abstraction.

There are two classes of inconsistencies which may occur during concretisa-
tion: state-based inconsistencies, which, due to tightness, will always manifest

12

Input: PTP P , dir ∈ {min,max}, ε > 0
A := Ai(P);
b := if dir = min then 1 else 0;
Loop:

compute σa and pdirA,n for n ∈ N ;
S,O,E, bp := ∅;
addState(ni, ui); πb(ni, ui) := b;
while |pdirA,ni

− πb(ni, ui)| > ε do
take s = (n, u) from O;
let (G, E ,∆) = σa(n);
if u 2 G then stateRefine(n,u); goto Loop;
expand(s);
if backpropagate() then goto Loop;
update πb;

return {πb(ni, ui), pdirA,ni
};

Figure 3: The refinement loop. In each iteration, the abstract adversary is computed, followed
by a partial concretisation. The inner loop uses functions expand(s) to obtain the successors
of s and add them to the concretisation, and backpropagate() to ensure consistency of the
time constraints. It is aborted if a refinement step occurred.

addState(s)
if s /∈ S then

let (n, u) = s,
(l, ϕ, ρ) = n;

add s to S;
η(s) := ρ;
if n /∈ Nd ∪Ne then

add s to O;

expand(s)
let (n, u) = s, (G, E ,∆) = σa(n);
foreach λj(fj , rj , nj) in ∆ do

sj := (nj , fj(u));
addState(sj);
add ej := (s, λj , rj , sj) to E;
η(ej) := E ∩ [rj := 0]η(sj);
if η(s) * η(ej) then add s to bp;

Figure 4: Procedure addState(s), left, adds a new state s to the partial concretisation, ini-
tialises its time constraints η(s), and schedules it for expansion (puts it in O) if necessary.
Procedure expand(s), right, determines the successors s1, . . . , sk of s, adds the edges from s
to sj , and adds s to bp if its time constraints now need to be strengthened.

themselves as the failure of a valuation to satisfy the guard of the adversary’s
chosen transition, and time-based inconsistencies, which occur when there is
no consistent choice of delay, and manifest themselves as the occurrence of an
empty zone η() = ∅ in the concretisation. Accordingly, there are two separate
refinement operations for an MDP abstraction: state refinement, which splits
a node with a predicate ϕ ∈ Asrt(V); and time refinement, which splits based
on an inconsistent set of clock difference constraints c1, . . . , ck. The former is
relatively standard, for abstraction refinement techniques; the latter is a novel
method that we have developed for the PTP model. In the next two sections,
we describe each of these in more detail. The main refinement loop is sketched
in Fig. 3. Pseudocode and descriptions of auxiliary functions addState(), ex-
pand() and backpropagate() are shown in Fig.s 4 and 5. Details of the refine-

13

backpropagate()
while bp 6= ∅ do

take s from bp, where s = (n, u) and n = (l, ϕ, ρ);
η′ := RX>0;
foreach e ∈ Es do η′ := η′ ∩ η(e);
if η′ = ∅ then

C := unsatisfiable core for ρ, {η(e)|e ∈ Es};
timeRefine(n,C); return true;

η(s) := ρ ∩ ↙ η′;
foreach e = (s′, λ′, r′, s) ∈ E do

let (n′, u′) = s′, (G′, E ′,∆′) = σ(n′);
η(e) := E ′ ∩ [r′ := 0]η(s);
if η(e) = ∅ then

C := unsatisfiable core for E ′[r′ := 0], η(s);
timeRefine(n,C); return true;

if η(s′) * η(e) then add s′ to bp;
return false;

Figure 5: backpropagate() strengthens the constraints η() in order to make them consistent.
A state s is in bp if η(s) does not imply η(e) for some edge e = (s, λ, r′, s′). The function
takes states from bp and strengthens their constraints (potentially causing new additions to
bp) until a contradiction occurs (in which case a refinement step is triggered and we return
true) or bp is empty (in which case a fixpoint was reached, and we return false). Since in
each iteration one of the finitely many zones η(s) shrinks, and zones satisfy the descending
chain condition, the procedure always terminates.

ment functions stateRefine() and timeRefine() are given in the next sections.
The algorithm maintains an MDP abstraction A = (N,ni, Ne, T), along with:

• an abstract adversary σa and resulting outer bounds pmin
A,n or pmax

A,n ;

• a partial concretisation (S,O,E), along with the associated inner bounds
πb(s) and time constraints η(s) and η(e) for all s ∈ S and e ∈ E;

• a set bp ⊆ S of states whose time constraints still need to be strengthened
to satisfy the required fixpoint equations (see p. 10).

The outcome of the algorithm, if it terminates, is a set containing an inner and an
outer bound {πb(ni, ui), pdirA,ni

}. Note that termination cannot be guaranteed in
general, since the class of PTPs is Turing complete (it contains counter automata
as a subclass). If the system is a PTA, then in the worst case the refinement
procedure constructs the region graph, since in each iteration we nontrivially
split a clock zone; see the proof of Thm. 5.

3.3. State Refinement
State refinement is triggered when forward exploration encounters a state

(n, u) such that u does not satisfy the guard G of the transition σa(n). Since
G is a conjunctive quantifier-free formula, at least one of its atomic constraints
is violated by u. We use the first failed constraint g to split n, introducing

14

stateRefine(n, u)
if n = ni then remove σa(ni) from T (ni); return;
let (l, ϕ, ρ) = n, (G, E ,∆) = σa(n);
g := first constraint from G with u 2 g;
n+ := (ln, ϕ ∧ g, ρ);
n− := (ln, ϕ ∧ ¬g, ρ);
T (n+) := T (n−) := T (n);
split(n, {n+, n−});

Figure 6: stateRefine(n,u) splits node n into new nodes n+, n− based on a guard constraint
violated by u.

split(n,N ′)
N := (N \ {n}) ∪N ′;
foreach n′ = (l, ϕ, ρ) ∈ N do

T ∗ := ∅;
foreach τ ∈ T (n′) and τ ′ = (G′, E ′,∆′) ∈ tsplit(τ, n,N ′) do

if ϕ ∧ G′ satisfiable and ρ ∩ E ′ 6= ∅ then add τ ′ to T ∗;
T (n′) := T ∗;

remove unreachable nodes;
Figure 7: split(n,N ′) replaces the node n with the set N ′ of nodes into which n has been
split, using tsplit (Fig. 8) to obtain the corresponding sets of transitions.

a case distinction. This makes the refinement local in the sense that we only
use information directly related to state (n, u), rather than having to take the
entire concretisation into account. The result of this split is a pair of new nodes
n+ = (l, ϕ∧g, ρ) and n− = (l, ϕ∧¬g, ρ). We then modify the sets of transitions:

• first, n+ and n− both inherit the outgoing transitions in T (n);

• then, for each τ = (G, E , λ1(f1, r1, n1) + · · ·+ λk(fk, rk, nk)) in A:

– find the indices I := {j | nj = n} of edges which need to be redirected;

– for each possible redirection ν : I → {n+, n−}, add a new transition
τν := (Gν , E , λ1(f1, r1, n

′
1) + · · · + λk(fk, rk, n′k)) with n′j = ν(j) for

j ∈ I, n′j = nj otherwise, and Gν obtained from G by adding the
corresponding preconditions g ◦ fj or ¬g ◦ fj for j ∈ I;

– for each n′ = (l′, ϕ′, ρ′) with τ ∈ T (n′), replace τ by those τν for
which ϕ′ ∧ Gν is satisfiable.

Satisfiability checks needed in the last step of the above are performed using an
SMT solver. Pseudocode for the refinement procedure stateRefine(), along with
auxiliary functions split() and tsplit() are shown in Fig.s 6, 7, and 8.

Note that the strengthening of G to G′ ensures the refined abstraction is
again tight, and this is the step which actually introduces new predicates into
the abstraction. Furthermore, the refined abstraction remains sound.

Theorem 4. Let A=(N,ni, Ne, T) be an MDP abstraction of PTP P , and let
A′=(N ′, n′i, N

′
e, T

′) be obtained from A by a state refinement. If A is sound for

15

tsplit(τ, n,N ′)
let (G, E , λ1(f1, r1, n1) + · · ·+ λk(fk, rk, nk)) = τ ;
S := ∅; I := {j | nj = n};
foreach ν : I → N ′ do

for j = 1, . . . , k do
n′j :=if j ∈ I then ν(j) else nj ;
let (l′j , ϕ

′
j , ρ
′
j) = n′j ;

Gν := G ∧
∧
j∈I(ϕ

′
j ◦ fj);

Eν := E ∩
⋂
j∈I [rj := 0]ρ′j ;

τν := (Gν , Eν , λ1(f1, r1, n
′
1) + · · ·+ λk(fk, rk, n′k));

add τ ′ to S;
return S;

Figure 8: tsplit(τ, n,N ′) is an auxiliary function for the refinement procedures. Given that n
is split into a set N ′ of nodes, it computes all possible variants of the given transition τ where
each edge leading to n is redirected to some node in N ′ instead.

P , then so is A′. If A is tight, then so is A′. Furthermore, A′ is a proper
refinement of A in the sense that the state assertions ϕ ∧ g and ϕ ∧ ¬g in the
new nodes are both satisfiable.

Proof. Let ∇ be a reflection of adversaries for A, and let A′ be obtained from
A by splitting n into n+, n− using the constraint g. We can then adapt ∇ by
defining for each wq ∈ Q+

c with q = (l, u, v) and each δ > 0:

∇′(wq, δ) =


n+ if ∇(wq, δ) = n, u � g

n− if ∇(wq, δ) = n, u 2 g
∇(wq, δ) otherwise.

Since ni and error nodes n ∈ Ne are never split (the former because it only occurs
in (ni, ui), and inconsistency with ui means that σ(ni) cannot be taken and can
be discarded; the latter because there are no outgoing transitions), we still have
∇′(wq, δ) = ni iff q = (li, ,) and ∇′(wq, δ) ∈ Ne iff q ∈ Qe. Let w ∈ Q+

c , and
σ be a (concrete) adversary for P with σ(w) = λ1q1 + · · · + λkqk induced by
δσ(w) ∈ R>0 and τσ(w) = (G, E , λ(f1, r1, l1) + · · ·+ λk(fk, rk, lk)). Since ∇ is a
reflection of adversaries, T (∇σ(w)) contains a corresponding abstract transition
τa = (G′, E ′, λ1(f1, r1,∇σ(wq1)) + · · · + λk(fk, rk,∇σ(wqk))). Let I be the set
{j | ∇σ(wqj) = n} and let the function ν : I → {n+, n−} be given by ν(j) = n+

iff qj � g. The refinement creates (among others) the new abstract transition
τν := (G′′, E ′, λ1(f1, r1,∇′σ(wq1)) + · · ·+ λk(fk, rk,∇′σ(wqk))) with G′′ obtained
from G′ by adding the respective preconditions.

Existence of the concrete transition σ(w) implies that ∇′σ(w) satisfies these
preconditions, and τν occurs in T ′(∇′σ(w)) after the split. So ∇′ is a reflection of
adversaries. As for concretisability of transitions, let τ ′ = (G′, E ′, λ1(f1, r1, n

′
1)+

· · ·+λk(fk, rk, n′k)) be a transition in A′. Then τ ′ was obtained from a transition
τ = (G, E , λ1(f1, r1, n1) + · · · + λk(fk, rk, nk)) in A such that: (i) G′ ⇒ G and
E ′ ⊆ E ; (ii) for each j, either nj = n′j or nj = n, n′j ∈ {n−, n+}; and (iii)

16

li,true,true
ni 1

l1,true,true
n1 1

l2,true,true
n2 0

l3,c 6 0,true
n4 1

l3,c > 0,true
n5 1

le,true,true
ne 1

c,
x,
y :=

0

x < 1, y > 3

c−−

x < 1, y > 3

c−−

1
2

c++

1
2

c
6
−
1

1
2
c++

1
2x := 0

c = 0 1
2

c+
+

1
2
x

:=
0

c
>

0

1
2
c++

1
2

x := 0

c > 1

x < 1

1
2

c−−

1
2

c
=

1, x
<

1

1
2

c−−

1
2

Figure 9: MDP abstraction for the running example, after state refinement (see Ex. 4).

(ni)
π0 = 1

4 true
(n1, c = 0)

π0 = 1
4 x < 1

x := 0

y := 0

(n4, c = 0)
π0 = 0 true

x := 0

(n5, c = 1)
π0 = 1

2 x < 1

(n5, c = 0)
π0 = 0 true

(ne, c = 1)
π0 = 1 true

x < 1

(ni)
π0 = 1

4 false
(n1, c = 0)

π0 = 1
4 x < 1,y > x + 1

x := 0

y := 0

(n4, c = 0)
π0 = 0 y > x + 2

x := 0 x < 1, y > 3

(n5, c = 1)
π0 = 1

2 x < 1

(n5, c = 0)
π0 = 0 true

(ne, c = 1)
π0 = 1 true

x < 1

Figure 10: Partial concretisations for the refined abstraction of Fig. 9 (see Ex. 4).

either τ ∈ T (n′), τ ′ ∈ T ′(n′) for some n′, or τ ∈ T (n), τ ′ ∈ T ′(n−) ∪ T ′(n+).
In each case, the associated locations are the same, so any concrete transition
witnessing concretisability of τ also does so for τ ′, and we are done.

In order to preserve tightness, all transitions have their guard G strengthened
by the preconditions of the newly introduced constraints as needed; note that
time constraints are copied from n to n+, n− and remain unchanged otherwise,
so that E does not need to be changed.

Finally, ϕ ∧ g is satisfiable since otherwise the transition σa(n) = (G, E ,∆)
would not have been in T (n), and ϕ ∧ ¬g is satisfiable since the valuation u
giving rise to the split satisfies both. �

Example 4. We return to the partial concretisation shown in Fig. 2 (right).
The next step of forward exploration, from (n3, c = 0), fails since the guard
constraint c > 0 is violated. Thus, node n3 is split using the predicate c > 0.
Fig. 9 shows the resulting MDP abstraction, where node n3 has been split into
n4 and n5, representing the states with c > 0 and c 6 0, respectively. This
leads to a corresponding split of transitions. Note the strengthening of guards

17

with preconditions to ensure tightness. Fig. 10 shows two successive partial
concretisations for the new abstraction. The first step encounters the clock
constraint x < 1 on the transition from n5 and propagates it backwards. In the
second step, we expand (n4, c = 0), encountering the constraints x < 1, y > 3.
Backpropagation then obtains the constraints:

• ↙ (x < 1 ∧ y > 3) ≡ y > x+ 2, added to (n4, c = 0);

• [x:=0](y > x+ 2) ≡ y > 2, added to the edge (n1, c = 0) → (n4, c = 0);

• ↙ (x < 1 ∧ y > 2) ≡ x < 1 ∧ y > x+ 1, added to (n1, c = 0);

• [x:=0, y:=0](x < 1∧ y > x+ 1) ≡ false, triggering a time refinement step.

3.4. Time Refinement
The refinement step for timing inconsistencies is more complex, for several

reasons. Firstly, because we treat time symbolically, a failure of concretisability
cannot always be localised as it could for the state predicate case. In general,
for some discrete state s, we will be dealing with a contradiction between the
constraints for some incoming edge (s0, λ0, r0, s) and those for the outgoing
edges (s, λj , rj , sj), j = 1, . . . , k. In particular, we will need to use more than
one difference constraint for splitting and obtain more than two new nodes.

Secondly, because of the implicit passing of time between transitions, we
must be careful when splitting with difference constraints: suppose one of the
constraints is a lower bound like x > 5. Naively splitting n = (l, ϕ, ρ) into
(l, ϕ, ρ ∩ (x < 5)) and (l, ϕ, ρ ∩ (x > 5)) wrongly eliminates any path which
enters n while x < 5, lets time pass until x > 5, and then leaves n. We avoid
this problem by not adding the lower bound x > 5 to the invariant of the
second node; instead, we add it to the enabledness conditions of its outgoing
transitions, so that it only has to hold when the node is left.

One consequence of this is that the abstraction will not represent a partition
of states, in the sense that exactly one abstract state is associated to each
concrete state. Instead, we have a partition (captured by the notion of reflection)
of pairs (q, δ) of a concrete state q and a delay δ > 0, in the sense that exactly
one abstract state is associated to each such pair.

A time refinement step is triggered whenever, during the backpropagation
of timing constraints, we find s = (n, u) such that strengthening η(s) with the
constraints η(e) on the outgoing edges e = (s, λ, r, s′) ∈ Es, and successively
strengthening the constraints η(e′) on the incoming edges with η(s), would
encounter an empty zone. Given such a contradiction involving n = (l, ϕ, ρ),
the backpropagation algorithm computes an unsatisfiable core C = {c1, . . . , cm}
(see Sec. 2.1), and calls timeRefine, which, for each j = 1, . . . ,m:

• defines a set of constraints ψj = {c1, . . . , cj−1, cj} – note that since C is un-
satisfiable, every clock valuation satisfies at least one of the complements
ci, so that ψ1, . . . , ψm define a partition of RX>0 into zones;

18

timeRefine(n,C)
let (l, ϕ, ρ) = n, {c1, . . . , cm} = C, with cj ≡ xij−1 − xij .j bj ;
/* where i0 = im, and ordered such that only i0 can be 0 */
if i0 > 0 then

for j = 1, . . . ,m do
ρ′ := c1 ∩ · · · ∩ cj−1 ∩ cj ;
n∗j := (l, ϕ, ρ ∩ ρ′);
T (n∗j) := {(G, E ∩ ρ′,∆) | (G, E ,∆) ∈ T (n)};

else /* c1, cm are lower bounds */
n∗1 := (l, ϕ, ρ ∩ c1);
T (n∗1) := T (n);
for j = 2, . . . ,m− 1 do

ρ′ := c2 ∩ · · · ∩ cj−1 ∩ cj ;
n∗j := (l, ϕ, ρ ∩ ρ′);
T (n∗j) := {(G, E ∩ c1 ∩ ρ′,∆) | (G, E ,∆) ∈ T (n)};

n∗m := (l, ϕ, ρ ∩ c2 ∩ · · · ∩ cm−1);
T (n∗m) := {(G, E ∩ c1 ∩ · · · ∩ cm−1 ∩ cm,∆) | (G, E ,∆) ∈ T (n)};

split(n, {n∗1, . . . , n∗m});
Figure 11: timeRefine(n,C) splits a node with time constraints obtained from an inconsistency.
Note the strengthening of the enabledness conditions E, which amounts to intersecting them
with the corresponding source invariants. We distinguish two cases, depending on whether c
contains single-clock bounds; see the proof of Thm. 5 for details.

• introduces a new state n∗j = (l, ϕ, ρ ∩ ψ′j), where ψ′j is given by the con-
straints in ψj not of the form x & c;

• adds to T (n∗j) all transitions from T (n), strengthening their enabledness
conditions by the constraints in ψj to take care of lower bounds and ensure
that again E ⊆ ρ.

Finally, the transitions in A are split like in the state-based case. For each τ =
(G, E , λ1(f1, r1, n1)+· · ·+λk(fk, rk, nk)), we determine the set I := {j | nj = n}.
Then, for each ν : I → {n∗1, . . . , n∗m}, we compute τν := (G, Eν , λ1(f1, r1, n

′
1) +

· · ·+λk(fk, rk, n′k)) where n′j=ν(j) for j ∈ I, n′j=nj otherwise, and Eν is the in-
tersection of E with the target node preconditions. Lastly, for each n′=(l′, ϕ′, ρ′)
with τ ∈ T (n′), we replace τ by those τν for which Eν is non-empty. Pseudocode
for the time refinement procedure timeRefine() is given in Fig. 11.

Theorem 5. Let A = (N,ni, Ne, T) be an MDP abstraction for PTP P and
A′ = (N ′, ni, Ne, T ′) be obtained from A by a time refinement step. If A is
sound for P , then so is A′. If A is tight, then so is A′. Furthermore, A′ is a
proper refinement of A in the sense that, for each of the new nodes n∗j , either its
invariant or the enabledness condition on its outgoing transitions is stronger.

Proof. Let ∇ be a reflection of adversaries for A and A′ be obtained from A by
splitting n = (l, ϕ, ρ) into n∗1, . . . , n

∗
m using an unsatisfiable core c1, . . . , cm. Like

in the proof of Thm. 3, we can refine ∇ by mapping all w, δ with ∇(w, δ) = n

19

to a suitable n∗j instead. We make one simplifying assumption on the ordering
of c1, . . . , cm. Recall that any variable occurs in exactly 2 or 0 constraints of
an unsatisfiable core; in particular, there is at most one lower bound x & b and
one upper bound x′ . b′. We assume that, if these do occur, they are c1 and
cm, respectively.

We first treat the case in which each cj is a proper difference constraint,
i.e. not an upper/lower bound. In this case, the new nodes form a partition
n∗j = (l, ϕ, ρ ∩ ηj), where the ηj are pairwise disjoint and closed under time
elapse. This means that, for each q = (l, u, v) ∈ Qc, there is an index jq such
that v + δ ∈ ρ ∩ ηjq for all delays δ > 0 with v + δ ∈ ρ. We thus define:

∇′(wq, δ) =

{
n∗jq if ∇(wq, δ) = n,

∇(wq, δ) otherwise.

This again ensures ∇′(wq, δ) = ni iff q = (li, ,) and ∇′(wq, δ) ∈ Ne iff q ∈ Qe.
Let w ∈ Qc(P) and σ(w) = λ1q1 + · · · + λkqk, induced by δσ(w) ∈ R>0

and τσ(w) = (G, E , λ(f1, r1, l1) + · · · + λk(fk, rk, lk)). Since ∇ is a reflection of
adversaries, T (∇σ(w)) contains a transition τa = (G′, E ′, λ1(f1, r1,∇σ(wq1)) +
· · · + λk(fk, rk,∇σ(wqk))). The refinement produces a corresponding abstract
transition τ ′a = (G′, E ′′, λ1(f1, r1,∇′σ(wq1))+· · ·+λk(fk, rk,∇′σ(wqk))), where E ′′
is obtained by intersecting E ′ with the invariant of ∇′σ(w) and the preconditions
of the zones ∇′σ(wqj). The existence of the concrete transition σ(w) shows that
E ′′ is non-empty, and therefore τ ′a will be included in T ′(∇′σ(w)).

In case we do have lower and upper bounds c1 ≡ x1 & b1, cm ≡ xm . bm−1,
the split of n involves a fragment n∗1 representing all “early” steps, i.e. those
taken while c1 is false, all others requiring the outgoing transitions to occur after
it becomes true. We reflect this in ∇′ as follows, for wq ∈ Q+

c with q = (l, u, v):

∇′(wq, δ) =


n∗1 ∇(wq, δ) = n, v + δ 2 c1
n∗jq ∇(wq, δ) = n, v + δ � c1,

∇(n, δ) otherwise,

where again jq is the unique index with v+δ ∈ ρ∩ηjq . Otherwise, the argument
works exactly as in the first case.

As in the state refinement case, we again observe that any transition τ ′ ∈
T ′(n′) is obtained from a transition in A whose source node belongs to the same
location as n′, each of whose target nodes belongs to the same location as the
corresponding target in τ ′, and whose enabledness conditions are implied by
those in τ ′, so that A′ inherits concretisability of transitions from A.

Tightness is preserved by strengthening the enabledness condition E in each
transition with the same constraints as the invariant in its source node (in
addition to lower bounds which are only added to E), and also with the pre-
images [r := 0]ρ of the invariants in their new target nodes (done in tsplit()).
State assertions are copied from n to the n∗j and remain unchanged otherwise,
so that G does not need to be strengthened.

20

l1,true,true
n1

l2,true,x > y
n2

l1,true,x 6 2
n1

l1,true,(x > 2, x < y)
n4

l1,true,(x > 2, x > y)
n5

l2,true,x > y
n2

l1,true,x 6 2
n1

l1,true,x < y
n4

l1,true,x > y
n5

l2,true,x > y
n2 x > 2

x 6 1
1
2

1
2 y := 0

x 6 1
1
2

1
2 y := 0

x 6 1
1
2

1
2 y := 0

x 6
1

1
2 y :=

0
1
2

x 6 1
1
2

1
2

y := 0

Figure 12: Time refinement (see Ex. 5): an MDP abstraction (top left); a naive, faulty
refinement, splitting node n1 (top right); and a correct one (bottom).

To show that A′ is a proper refinement, it is enough to show that, for each
constraint cj in the unsatisfiable core, cj is not implied by ρ, i.e. cj is satisfied
by some t ∈ ρ. There are two cases, depending on where in the backpropagation
the inconsistency giving rise to the split occurred.

If it happened when trying to strengthen η(s) for s = (n, u), then:
ρ ∩ ↙ (ρ ∩

⋂
e∈Es

η(e)) = ∅ ⇔ ↗ ρ ∩ (ρ ∩
⋂
e∈Es

η(e)) = ∅
⇔ ρ ∩

⋂
e∈Es

η(e) = ∅
and the split is performed with an unsatisfiable core C for ρ, {η(e) | e ∈ Es}.
By tightness, for each e ∈ Es, η(e) ⊆ E ⊆ ρ, and η(e) 6= ∅ since otherwise a
refinement would have been triggered earlier. So each constraint in C is implied
by a non-empty subset of ρ, and therefore satisfied by some v ∈ ρ.

If the inconsistency occurred when strengthening η(e) for e = (s′, λ, r, s)
with s = (n, u) and σa(n) = (G, E ,∆), then:

E ∩ [r := 0]η(s) = ∅ ⇔ E [r := 0] ∩ η(s) = ∅,

and the split is performed with an unsatisfiable core C for E [r := 0], η(s). By
tightness, both are subsets of ρ. E [r := 0] is non-empty since E is non-empty,
and η(s) is non-empty since otherwise a refinement would have been triggered
earlier. Again, each constraint in C is implied by a non-empty subset of ρ, and
therefore satisfied by some v ∈ ρ. �

Example 5. For presentational simplicity, we illustrate time refinement on a
separate example. Fig. 12 (top left) shows part of an MDP abstraction in which
we want to split n1 with c = {x > 2, x < y, y < 1}. From c, we first obtain a
partition {x 6 2, x > 2 ∧ x > y, x > 2 ∧ x < y ∧ y > 1}. The straightforward
analogue to the state-based case, using these zones as invariants in three copies
of n1, falsely makes it impossible for time to progress beyond 2 in l1. Adding
lower bounds such as x > 2 to enabledness conditions instead of node invariants
(as on the transition n5 → n2 in the corrected version) fixes this.

21

4. Experiments

We have built a prototype implementation of our local abstraction refinement
approach on top of the probabilistic model checker PRISM [18]. We use an
extended version of PRISM’s existing DBM library for manipulating zones and
the MathSAT 4 SMT solver [4] for satisfiability queries. Experiments were run
on a 64-bit PC with an Intel Xeon CPU X5660 2.80GHz and 32GB RAM. Our
implementation is parameterised by the strategy used to search the state space
during concretisation. For models with unbounded data types (see below), we
use breadth-first search and set ε = 1× 10−6 for termination of refinement; for
other models we use depth-first search and set ε to zero.

PRISM and its modelling language already have native support for PTAs,
and these can incorporate data variables using PRISM’s built-in datatypes
(bounded integers and Booleans) so we use this as a basis for modelling PTPs.
We evaluated our implementation on 11 case studies. Firstly, we used 6 existing
PTA benchmarks [26]: csma full , csma abst (two models of the CSMA/CD pro-
tocol); nrp malicious,nrp honest (two variants of Markowitch & Roggeman’s
non-repudiation protocol); and firewire impl ,firewire abst (two models of the
FireWire root contention protocol). Secondly, we used real-time versions of two
more complex models: the Zeroconf model of [13] (zeroconf full), and the slid-
ing window model of [11] (sliding window real -time), which uses infinite data
types (an unbounded integer storing the round counter). Finally, we tested our
implementation on three discrete-time (MDP) models with infinite data types:
the (original, discrete-time) sliding window protocol (sliding window discr .) and
bounded retransmission protocol (brp) models from [11]; and the discrete-time
model of Zeroconf (zeroconf discr .) from [13], modified so that the counter of
“probe” messages sent is an unbounded integer. This change does not affect the
value of the property we check. For brp, we fix the parameter TIMEOUT=16.
In order to support infinite data types, we slightly extended the PRISM mod-
elling language in the style of PASS [9]. All models and properties, and our
prototype implementation, are available at [27].

We compare our approach to other available tools. For PTPs with only
bounded datatypes, we run PRISM [18] (v.4.0.1), using its game-based abstrac-
tion refinement [13] engine (which outperforms digital clocks [19] on all but the
zeroconf full case study). We also compare to FORTUNA [3] (v.0.2), which
verifies (priced) PTAs, but we are only able to run a subset of the benchmarks
since models are hard-coded into the tool. FORTUNA only handles maximum
probabilities, but can compute minimum probabilities for some models through
hard-coded model translations. For the three MDP models, we compare to the
predicate abstraction tool PASS [9]. None of these tools are applicable for the
sliding window real -time model, which uses both clocks and unbounded data
types. Recent work [8] describes an extension of PASS for real-time models.
Presently, we only have access to the experimental results in [8], rather than the
tool; we make a brief comparison below.

For the csma full benchmark, we pre-process models to reduce the degree of
probabilistic branching and avoid transition explosion during refinement (details

22

Model &
parameters

PRISM (stoch. games) Local abstr.-refinement FORTUNA
Proba-
bility

States
Iter.

Time States
Iter.

Time
States

Time
(peak/final) (s) (peak/final) (s) (s)

csma
full

[bmax,K]

3, 8 69123/69123 10 18.6 3215/3215 1714 6.3 1058 1.2 2.32e-4
3, 16 168525/168525 0 42.4 8032/8032 5419 28.1 2266 2.9 2.11e-9
4, 8 239353/239353 10 151.4 8292/8292 3320 20.0 2315 4.4 1.65e-5
4, 16 646019/646019 0 461.8 18548/18548 10728 83.0 4547 9.1 7.65e-13

nrp
malicious

[T]

20 30088/30088 6 36.8 556/556 540 4.6 635 1.9 0.10566
25 58494/58494 6 80.7 490/490 482 2.1 805 4.3 0.10566
30 85807/85807 6 124.5 770/770 762 7.6 crashed 0.10566
35 122182/122182 6 227.6 968/968 949 7.4 1145 10.4 0.10566

zeroconf
full

[N,M,K]

3, 8, 4 142627/1690 0 13.4 2273/2273 310 3.4 n/a 3.021e-5
3, 8, 8 231363/3162 0 21.5 2476/2476 405 4.7 n/a 2.351e-9
4, 8, 4 1979351/5481 0 275.7 13116/434 849 33.9 n/a 1.464e-4
4, 8, 8 3109815/8737 0 489.7 13667/818 1189 53.5 n/a 5.013e-8

sliding
window

real-time
[N, p]

8, 0.5 n/a 4666/4666 3561 61.8 n/a 0.78123
8, 0.98 n/a 4286/4286 3231 284.1 n/a 0.05805
10, 0.5 n/a 5888/5888 4455 104.9 n/a 0.78125
10, 0.98 n/a 5317/5317 4013 614.1 n/a 0.05805

Table 1: Experimental results for real-time models (maximum probabilities).

Model &
parameters

PRISM (stoch. games) Local abstr.-refinement FORTUNA
Proba-
bility

States
Iter.

Time States
Iter.

Time
States

Time
(peak/final) (s) (peak/final) (s) (s)

csma
abst

[bmax, T]

1, 1000 6420/6420 0 1.3 108/108 78 0.42 254 0.21 0.0
1, 2000 24789/24789 37 9.5 402/397 471 1.3 437 0.39 0.86979
1, 3000 80741/80741 76 158.5 749/749 876 2.95 1178 2.15 0.99982
1, 4000 91923/91923 0 69.2 1236/1236 1451 9.26 1900 5.9 0.9999997

firewire
abst

[delay, T]

360, 5000 206/206 7 0.26 31/31 20 0.09 64 0.02 0.78125
360, 10000 1020/1020 19 0.86 97/96 91 0.30 181 0.05 0.97473
360, 20000 9070/9070 40 7.5 347/347 340 0.85 641 0.36 0.99963
360, 30000 34682/34682 46 102.1 1049/1049 1057 5.5 1378 1.44 0.99999

firewire
impl

[delay, T]

360, 2500 1443/1443 0 0.82 178/178 115 0.55 n/a 0.5
360, 5000 4463/4463 17 3.2 991/990 1230 2.6 n/a 0.78125
360, 7500 10700/10700 34 17.8 2030/2030 2196 9.9 n/a 0.93164
360, 10000 24449/24449 56 94.1 8434/8434 9143 382.5 n/a 0.97473

nrp
honest

[T]

80 1531/1531 39 4.5 46/46 44 0.18 n/a 0.86491
100 2286/2286 49 9.0 56/56 54 0.23 n/a 0.92023
200 8311/8311 99 147.1 106/106 104 0.31 n/a 0.99427
400 31611/31611 199 2893.4 206/206 204 0.56 n/a 0.99997

Table 2: Experimental results for real-time models (minimum probabilities).

at [27]). PRISM performs better on the original so we use that for comparison.

Results. Experimental results for the real-time models are summarised in
Tab.s 1 and 2, covering maximum and minimum probability properties, respec-
tively. The results for discrete-time (MDP) models are in Tab. 3. For each
abstraction refinement method (PRISM, PASS and our local abstraction refine-
ment), we show the number of abstract states (both the peak and final number),
the number of iterations of refinement and the total time. For FORTUNA, we
just show states and time, since no refinement is performed.

Our prototype consistently outperformed PRISM’s game-based abstraction
for PTAs except on the firewire impl model with T = 10000. We use a signifi-
cantly higher number of refinement steps, but these are small, local refinements
and, crucially, the size of the abstraction constructed is typically much smaller.
It should be noted, though, that the zeroconf full model proves to be expensive

23

Model &
parameters

PASS Local abstr.-refinement
ProbabilityStates

Iter.
Time States

Iter.
Time

(peak/final) (s) (peak/final) (s)

sliding
window
discr .
[N, p]

8, 0.5 62160/3357 9 157.7 1546/1546 1197 9.0 0.4999
8, 0.98 232489/5009 6 2027.8 1480/1480 1136 31.6 0.01999999
10, 0.5 202487/1377 12 2244.6 2004/2004 1546 12.9 0.49999
10, 0.98 307748/4452 6 3490.4 1670/1670 1294 58.3 0.01999999

brp
[Max,
p1, p2]

10, 0.5, 0.5 899/899 10 1.5 793/793 480 7.048 4.883e-4
10, 0.98, 0.99 899/899 10 4.3 753/753 474 20.899 2.048e-19
20, 0.5, 0.5 1679/1679 20 4.5 1341/1341 869 11.121 4.768e-7

20, 0.98, 0.99 1679/1679 20 11.2 1821/1821 1048 165.048 2.097e-36
100, 0.5, 0.5 7919/7919 100 189.4 4752/4751 4170 254.181 3.944e-31

zeroconf
discr .

[N,M,K]

3, 8, 4 4465394/10012 6 283.4 5446/5446 1797 33.2 3.021e-5
3, 8, 8 4465394/17276 8 459.4 7143/7143 2603 82.8 2.351e-9
4, 8, 4 memory overflow 17209/17209 2818 109.6 1.464e-4
4, 8, 8 memory overflow 19411/19411 3842 255.3 5.013e-8

Table 3: Experimental results for discrete-time models.

for PRISM since the current implementation expands parallel composition in a
PTA before constructing an abstraction from it, resulting in a blow-up in the
(intermediate) state space. It should be possible to adapt PRISM to bypass this
step and avoid the blow-up.

The comparison with FORTUNA is more varied. Our prototype runs slightly
faster on the larger nrp models, and does not fall far behind FORTUNA on the
csma abst and firewire abst models. But FORTUNA performs much better on
the csma full examples. This is because abstraction refinement for these mod-
els needs a relatively high number of refinement steps, each of which requires
numerical computation to be performed. For PTAs, it is possible to avoid ab-
straction refinement entirely, as done by FORTUNA. On more complex models
with many data variables, the benefits of abstraction should be more visible. In
particular, for those with unbounded data variables, our abstraction refinement
method works where PRISM and FORTUNA do not.

PASS has several different refinement strategies, from which we select the
best performing one on each model. The results show that our prototype needs
significantly less runtime on the sliding window discr . and zeroconf discr . case
studies (and scales to larger models on the latter). Like for the comparison
with PRISM, we use more iterations of refinement, but each one is cheaper; our
abstractions also have significantly fewer states,

For the brp example, PASS performs slightly better: it benefits from a small
number of states, while our implementation suffers from heavy numerical anal-
ysis, especially when p1 and p2 are close to one, which makes value iteration
converge very slowly. On this example, we used a simple heuristic that gives
significantly improved performance: we discover all conflict states during the
symbolic execution of an adversary and choose the state with the maximum
depth for splitting. Interestingly, this heuristic does not improve performance
for other case studies, which is worth further investigation. A different numeri-
cal solution method (not value iteration) might also help in this case. Further
investigation on a wider set of untimed models is required to make a more
thorough comparison between local abstraction refinement and the techniques

24

implemented in PASS. At the present time, our focus is primarily on models
incorporating both real-time and data aspects.

Finally, we make a brief comparison with the tool PASS-PTA, described in
the recent paper [8]. Since this is not available for testing, we give an indirect
comparison based on the results in this paper and in [8]. The only model in
common is csma (property P1 in [8]), on which PASS-PTA is slower than PRISM
and local abstraction refinement is faster. For zeroconf our results are from a
more complex variant of the model than in [8]. We intend to perform a more
in-depth comparison when PASS-PTA becomes available.

Overview. In summary, our approach tends to perform well, generating com-
paratively small abstract models using a relatively large number of (small, local)
refinement steps. When the number of refinements becomes particularly high
(e.g., csma with bmax = 4,K = 16), performance is degraded but, in our exper-
iments, the tool still outperformed the game-based abstraction of PRISM. This
gain derives from the use of simple operations on smaller abstractions and a
reduction in the amount of numerical computation that needs to be performed.

Perhaps unsurprisingly, our approach performs better on real-time models,
than on the versions that have been discretised. Compare, for example, the
zeroconf models in Tab.s 1 and 3. These models are equivalent (and indeed, the
results match), but abstraction is much more efficient when applied to the real-
time version. For the sliding window model, a direct comparison is not possible
since the real-time version of the model contains an additional clock because of
limitations in the modelling language. This model does, though, illustrate the
main benefit of our approach: the ability to verify models where abstraction of
both the timed and data aspects is required, in particular when both real-time
clocks and unbounded data types are present.

5. Conclusions

We have presented a novel abstraction refinement approach for the verifica-
tion of probabilistic, real-time systems with potentially infinite data variables.
Our approach uses local refinement steps, which results in more compact ab-
stractions than alternative abstraction refinement techniques.

Future work includes extending it to support probabilistic hybrid automata
(where operations to build and refine abstractions are even more costly) and
applying it to mainstream programming languages such as C, Java or SystemC.

Acknowledgements. The authors are part supported by EC FP7 projects
CONNECT (IST 231167) and HIERATIC, ERC Advanced Grant VERIWARE,
and EPSRC project LSCITS (EP/F001096/1).

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput.
Sci., 82(2):253–284, 1991.

[2] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
Lectures on Concurrency and Petri Nets, pages 87–124, 2003.

25

[3] J. Berendsen, D. Jansen, and F. Vaandrager. Fortuna: Model checking priced
probabilistic timed automata. In Proc. QEST’10, pages 273–281, 2010.

[4] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4 SMT solver. In Proc. CAV’08, pages 299–303. Springer, 2008.

[5] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig inter-
polants in satisfiability modulo theories. ACM T. Comput. Log., 12(1), 2010.

[6] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In Proc. PAPM/PROBMIV’01,
pages 39–56. Springer, 2001.

[7] J. Esparza and A. Gaiser. Probabilistic abstractions with arbitrary domains. In
Proc. SAS’11, pages 334–350, 2011.

[8] L. M. Ferrer Fioriti and H. Hermanns. Heuristics for probabilistic timed automata
with abstraction refinement. In Proc. MMB/DFT’12, pages 151–165, 2012.

[9] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PASS: Abstraction refine-
ment for infinite probabilistic models. In Proc. TACAS’10, 2010.

[10] A. Hartmanns and H. Hermanns. A modest approach to checking probabilistic
timed automata. In Proc. QEST’09, pages 187 –196. IEEE, 2009.

[11] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Proc. CAV’08,
volume 5123 of LNCS, pages 162–175. Springer, 2008.

[12] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refine-
ment for probabilistic software. In Proc. VMCAI’09, 2009.

[13] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design, 36(3):246–280, 2010.

[14] J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer-
Verlag, 2nd edition, 1976.

[15] A. Komuravelli, C. Pasareanu, and E. Clarke. Assume-guarantee abstraction
refinement for probabilistic systems. In Proc. CAV’12, pages 310–326, 2012.

[16] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of
probabilistic timed automata. In Proc. FORMATS’09, pages 212–227, 2009.

[17] M. Kwiatkowska, G. Norman, and D. Parker. A framework for verification of
software with time and probabilities. In Proc. FORMATS’10, pages 25–45, 2010.

[18] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Proc. CAV’11, pages 585–591, 2011.

[19] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design, 29:33–78, 2006.

[20] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

[21] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking
for probabilistic timed automata. Inf. and Comp., 205(7):1027–1077, 2007.

[22] J. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1998.

[23] S. Tripakis. Verifying progress in timed systems. In Proc. ARTS’99, volume 1601
of LNCS, pages 299–314. Springer, 1999.

[24] B. Wachter and L. Zhang. Best probabilistic transformers. In Proc. VMCAI’10,
volume 5944 of LNCS, pages 362–379. Springer, 2010.

[25] L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn. Safety verification
for probabilistic hybrid systems. In Proc. CAV’08, 2008.

[26] http://www.prismmodelchecker.org/benchmarks/.
[27] http://www.prismmodelchecker.org/files/tcs-ptps/.

26

http://www.prismmodelchecker.org/benchmarks/
http://www.prismmodelchecker.org/files/tcs-ptps/

	Introduction
	Preliminaries
	Clocks
	Markov Decision Processes (MDPs)
	Probabilistic Timed Programs (PTPs)

	Abstraction Refinement for PTPs
	MDP Abstractions
	The Refinement Loop
	State Refinement
	Time Refinement

	Experiments
	Conclusions

