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ABSTRACT

Modelling of the dynamics of biochemical reaction networks
typically proceeds by solving ordinary differential equations
or stochastic simulation via the Gillespie algorithm. More
recently, computational methods such as process algebra
techniques have been successfully applied to the analysis
of signalling pathways. One advantage of these is that
they enable automatic verification of the models, via model
checking, against qualitative and quantitative temporal logic
specifications, for example, “what is the probability that the
protein eventually degrades?”. Such verification is exhaus-
tive, that is, the analysis is carried out over all paths,
producing exact quantitative measures. In this paper, we
give an overview of the simulation, verification and differen-
tial equation approaches to modelling biochemical reaction
networks. We discuss the advantages and disadvantages of
the respective methods, using as an illustration a fragment
of the FGF signalling pathway.

1 INTRODUCTION

Biological signalling processes control key responses in
multicellular organisms such as cell multiplication, differ-
entiation and movement. Many modelling frameworks have
been put forth to advance the scientific understanding of
these complex processes. Traditionally, one assumes that the
time evolution of the number (or concentration) of molecules
is continuous, leading to a set of coupled ordinary differ-
ential equations (usually non-linear) called reaction rate
equations. An alternative, stochastic, approach views the

system as a continuous time Markov process, and admits an
efficient solution via stochastic simulation (Gillespie 1977).
More recently, the observation that concurrency is present
in these processes has led to the adoption of process algebra
approaches developed for description and analysis of com-
plex software systems in computer science. In particular, in
(Regev and Shapiro 2002, Priami et al. 2001) the stochastic
π-calculus has been proposed as particularly appropriate to
model the dynamics of molecular processes.

Process-algebraic approaches view systems as networks
composed of concurrent, interacting molecules or molecular
ensembles, and can be applied at all levels of abstraction,
molecular, cellular and tissue (Regev and Shapiro 2002). The
“molecule-as-computation” paradigm embodied in process
calculi is very attractive, since it offers a compact notation
with a minimal repertoire of computational abstractions of
molecular interactions that are supported by a formal reason-
ing framework. Thus, one can formulate a hypothesis about
a specific signalling mechanism in terms of aπ-calculus
process, and benefit from computer assisted reasoning via
in silico genetics, i.e., a series of experiments on the models
performed by manipulating process descriptions, for exam-
ple, the removal of a protein, each of which can be validated
against experimental data and prioritised according to the
potential of the discovery being predicted.

The stochasticπ-calculus modelling framework sup-
ports not only Monte Carlo simulation to obtain time-
evolution of molecular concentrations using tools such as
BioSPI (Regev and Shapiro 2004) and SPiM (Cardelli and
Phillips 2004), but also formal reasoning, for example, au-
tomatic verification via model checking. With the help of



Kwiatkowska, Norman, Parker, Tymchyshyn, Heath and Gaffney

techniques such as probabilistic model checking (Rutten
et al. 2004), one can obtain qualitative and quantitative
answers to queries such as “does this reaction always lead
to degradation?”, “what is the probability that the protein
eventually degrades?” and “what is the expected number
of complexation reactions before relocation occurs?”.

Naturally, each of the modelling frameworks and anal-
ysis techniques mentioned above has advantages and disad-
vantages, and it is important to understand these in order to
decide on their applicability for a particular modelling or ex-
perimental context. In this paper, we give an overview of the
main modelling and analysis approaches for signalling path-
ways, and discuss their respective strengths and weaknesses
using as an illustration a fragment of a complex signalling
pathway, the FGF (Fibroblast Growth Factor) pathway. FGF
are a family of proteins which play an important role in cell
signalling, e.g., wound healing. The dynamics of the FGF
pathway are complex and not yet fully understood. Aspects
of the full pathway were studied elsewhere using ODEs,
e.g., (Yamada et al. 2004), and process calculi (Heath et al.
2006). Other simpler pathways have also been studied using
process calculi approaches, e.g., ERK (Calder et al. 2006)
and MAPK (Phillips and Cardelli 2005).

2 MODELLING FRAMEWORKS

We consider the problem of modelling a mixture of molecules
from N different molecular species, which can interact
through a number of reactions. We assume a spatially
uniform mixture in a fixed volumeV at constant pressure
and temperature. In this section, we distinguish between two
distinct modelling approaches, based on either a continuous
or a discrete time evolution of the molecules; see e.g.,
(Wolkenhauer et al. 2004, Gillespie 1977).

2.1 The Continuous Deterministic Approach

One approach is to approximate the number of molecules
of each species inV at time t by a continuousfunction,
which is justifiable for large numbers of molecules. More
precisely, this measures the concentration of each species
in molar units (M) which corresponds to the number of
molecules per unit volume (litre) divided by Avogadro’s
number (NA = 6.022e+23).

Consider for example a reversible reaction between
speciesA andB that can become bound (AB):

A + B
k1−→←−
k2

AB

wherek1 (M−1s−1) describes the velocity of the compound
formation andk2 (s−1) is the velocity of the breakdown of
the complex. The values are called kinetic rates and are
derived from experimental data. Using theprinciple of mass

action, the change in concentration is proportional to the
kinetic rate and the amount of reactant species, and therefore
we can represent the time evolution of the concentration
[AB] of the complexAB by the reaction rate equation:

d[AB](t)
dt

= k1·[A](t)·[B](t)− k2·[AB](t)

The solution of the derived set of ordinary differential
equation inN -dimensional space gives the required time
evolution of the concentrations. There are different types
of biochemical reactions, which vary in the number of
reactants, the type of reaction (reversible or irreversible) and
the type of reactant (e.g., enzyme/substrate). The analysis
of the enzyme-catalysed reaction can be simplified by the
Michaelis-Menten kinetics.

Note that, although the underlying physical interpre-
tation involves random collisions of molecules, the ODEs
predict average population levels. Therefore, the model
is deterministic, but only with respect to a perceived av-
erage of a process that is subject to random fluctuations.
In the derivation of the differential equation, we assume a
large number of molecules so that a process with discrete
changes can be approximated by a continuous model. Math-
ematically, this corresponds to approximating a difference
equation with a differential equation.

2.2 The Discrete Stochastic Approach

An alternative is to take adiscreteview of the evolution
of the system, where the occurrence of a reaction between
molecules corresponds to a discrete event. It is argued
that this is a more accurate representation of the physical
system being modelled, particularly when dealing with small
numbers of molecules. The evolution of such a model is
inherentlystochastic, representing the probability that there
aren molecules of theith species at timet, for eachi. This
is a discrete-state time homogeneous Markov process whose
states are vectors of molecule counts and state changes are
dependent on stochastic constants (determined from the rate
constants) and the numbers of molecules of each species.

This approach is based on thegrand probability function
P (x, t) – the probability that, at timet, there will bexS

of speciesS, where x is a vector of molecular species
populations and the solution can be formulated as a set of
partial differential equations, known as thechemical master
equation(Gillespie 1977). Returning to the simple reactions
above,x is of the form (xA,xB ,xAB) (the quantities of
A, B and AB), and so denoting the complexation and
decomplexations reactions by 1 and 2 respectively, we have:

∂P (x, t)
∂t

=
2∑

i=1

(
ai(x−v)P (x−v, t)−ai(x)P (x, t)

)
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whereai(x)·∂t is the probability of, in statex, reactioni
occurring in the interval(t+∂t) (and can be derived from
ki andx), andvi is the stoichiometric vector defining the
result of reactioni, i.e.,v1=(−1,−1, 1) andv2=(1, 1,−1).

Under the assumption of constant state-dependent rates,
the underlying Markov process is a continuous-time Markov
chain, which assumes exponentially distributed reaction
rates; this is justified since, if collision times are small
compared to the times between collisions, molecules are
moving chaotically, and a constant ratio of overall collisions
lead to reactions (Wolkenhauer et al. 2004). The states of
the resulting Markov chain are vectors representing interact-
ing molecules, and transitions are determined by the rates
combined with concentrations and are selected according
to the usual race condition.

The approach described above can be classified as
population-basedsince the model represents the number
of each molecular species present, and does not consider
interactions between individual molecules. However, we
can extend the discrete stochastic approach to anindividual-
basedmodel, where the state and behaviour of each molecule
is represented separately. This approach is desirable if, for
example, the assumptions of perfect diffusion and well
stirred substance are dropped, or if we are interested in the
behaviour of individual components. Clearly, though, this
comes with the cost of increased complexity.

3 MODELLING FORMALISMS AND LANGUAGES

We now summarise a selection of different formalisms
which have been proposed for the modelling of biochemical
reactions. To do so, we introduce a running example: a
fragment of the earlier studied (Heath et al. 2006) Fibroblast
Growth Factor (FGF) pathway.

Figure 1 shows a graphical representation of the ele-
ments of the system that we consider. Figure 2 presents the
set of reactions between the elements, which can be sum-
marised as follows. An FGF protein (molecule) can bind to
an FGF receptor (FGFR). When FGF and FGFR are bound,
two different residues on FGFR can become phosphorylated
which, subsequently, allow the signal transducing proteins
Src and Grb2 to bind to FGFR. Each of these reactions
is also reversible. Finally, when Src is bound, FGFR can
be relocated, along with any components bound to it. The
reaction rates given in Figure 2 are based on experimental
observations from the literature.

3.1 SBML

SBML (SBML 2006) is a computer-readable language based
on XML for representing models of biochemical reaction
networks. SBML is intended as a standardised representation
of models that can be shared, manipulated and analysed using
tools available in the systems biology community. Models

FGF

Grb2

FGFR

Src
− phosphorylation

Figure 1: Graphical Representation of FGF and FGFR In-
teraction and Their Effect on Src and Grb2.

1: FGF binds/releases FGFR
FGF + FGFR→ FGFR:FGF k1=5e+8 M−1s−1

FGF + FGFR← FGFR:FGF k2=0.002 s−1

2: Phosphorylation of FGFR (whilst FGFR:FGF)
FGFR:FGF + FGFR1→ FGFR:FGF + FGFR1Pk3=0.1 s−1

FGFR:FGF + FGFR2→ FGFR:FGF + FGFR2Pk4=0.1 s−1

3: Dephosphorylation of FGFR
FGFR1P→ FGFR1 k5=0.1 s−1

FGFR2P→ FGFR2 k6=0.1 s−1

4: Effectors bind phosphorylated FGFR
SRC + FGFR1P→ SRC:FGFR k7=1e+6 M−1s−1

SRC + FGFR1P← SRC:FGFR k8=0.02 s−1

GRB2 + FGFR2P→ GRB2:FGFR k9=1e+6 M−1s−1

GRB2 + FGFR2P← GRB2:FGFR k10=0.02 s−1

5: Relocation of FGFR (whilst SRC:FGFR)
SRC:FGFR→ relocFGFR k11=1.1e-3 s−1

Figure 2: Summary of the Reactions

are composed from components, which permit definition of
reactant species, product species, descriptions of reaction
equations using MathML expressions, and the specification
of kinetic laws and parameters. Compartments are allowed,
but not considered here. Figure 3 shows a fragment of
the SBML description for the reactions in Figure 1, more
specifically, for the first line of reaction4.

SBML is widely supported and facilitates interchange
between different tools, e.g., it is supported by ODE tools
such as SIGMOID and Cellerator (Shapiro et al. 2003),
and stochastic simulation (e.g., Dizzy). Recently, automatic
generation of a large fragment of the stochasticπ-calculus
from SBML has been implemented (Eccher 2006).

3.2 The Stochasticπ-Calculus

Process calculi are formal languages for representing sys-
tems as networks of concurrent interacting processes, each
operating according to explicitly given rules and combined
in parallel. Such compositional descriptions of networks
are compact and easy to manipulate. In order to model bio-
chemical reactions, which occur at specified reaction rates,
stochastic extensions of process calculi have been formu-
lated. There are different dialects of calculi that differ in the
synchronisation method used (e.g., channel or action-based,
binary/multi-way) and types of operators.

Thestochasticπ-calculuswas proposed in (Regev and
Shapiro 2004) as a framework for modelling of biological
processes, and a translation scheme was given for represent-
ing biochemical reactions in this formalism. The models
of reaction networks induced from stochasticπ-calculus
process are continuous time Markov chains, and therefore
the stochasticπ-calculus should be viewed as a conve-
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<listOfSpecies>
· · ·

<species id="FGFR Ph1" initialConcentration="0" . . . />
<species id="SRC" initialConcentration="N" . . . />

· · ·
</listOfSpecies>
<reaction id="Reaction1" reversible="false">

<listOfReactants>
<speciesReference species="FGFR Ph1" />
<speciesReference species="SRC" />

</listOfReactants>
<listOfProducts>

<speciesReference species="FGFR SRC" />
</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <times/>

<ci>k7</ci> <ci>FGFR Ph1</ci> <ci>SRC</ci>
</apply>

</math>
</kineticLaw>

</reaction>

Figure 3: SBML Code Fragment

nient, compositional language for describing discrete-state
stochastic models of Section 2.2. Two simulation systems
that acceptπ-calculus process syntax are available, BioSPI
based on (Regev and Shapiro 2004) and SPiM (Cardelli
and Phillips 2004). Other stochastic process calculi include
PEPA (Hillston 1996), which has been successfully applied
to the modelling of small examples such as the Ras/Raf/ERK
signalling pathway (Calder et al. 2006).

A fragment of theπ-calculus code (in the textual format
of BioSPI) relating to FGFR and its interactions with FGF
and Src is shown in Figure 4. We encode an FGFR protein
as the parallel composition of interacting subcomponents,
each of which models a characteristic of the protein, for
example the connection to an FGF protein (bound/unbound)
or the state of a residue (phosphorylated/unphosphorylated).
Subcomponents serve as both protein internal states and its
interfaces through which the interactions with other proteins
occur. FGF, Src and Grb2 are modelled as separate processes
(omitted from Figure 4). Input, output, action prefix and
choice are denoted by “?”, “!”, “,” and “;” respectively. For
further details, see e.g., (Regev and Shapiro 2004).

The stochasticπ-calculus can be used for both
population- and individual-based models, and can be auto-
matically generated from SBML descriptions of biochemical
networks, see (Eccher 2006) for a recent proposal. One dis-
advantage of theπ-calculus is the restriction to (asymmetric)
binary input/output communication, rather than multi-way
interactions between processes (see for example the se-
quence of actions (reloc, reloc1,. . . ) in FGFRSRC in
Figure 4 to model FGFR relocation).

3.3 PRISM

PRISM (Hinton et al. 2006, PRISM 2006) is a probabilistic
model checker: a tool for the formal verification of quantita-
tive properties of stochastic systems. It supports construction

FGFR ::= FGFRFGF0 | FGFR Ph10 | . . . .

FGFR FGF0::= bind fgf!{rel fgf, reloc4}, FGFRFGF1; % binding FGF
reloc1?[] , true .% relocation

FGFR FGF1::= rel fgf?[] , FGFR FGF0; % releasing FGF
ph1?[] , FGFRFGF1; % phosphorylation

reloc1?[] , reloc4![] , true;% relocation
. . . .

FGFR Ph10 ::= ph1![] , FGFRPh11 . % phosphorylation
FGFR Ph11 ::= bind src!{rel src1, relsrc2} , FGFRSRC; % binding Src

dph1![] , FGFRPh11 . % dephosphorylation
FGFR SRC ::= relsrc1?[] , FGFRPh11; % releasing Src

dph1![] , rel src2! [], FGFRPh10;
% dephosphorylation (and releasing Src)
reloc![] , reloc1![] , reloc2![] , true . % relocation

Figure 4: Stochasticπ-calculus Code Fragment

and analysis of three types of models: continuous-time and
discrete-time Markov chains and Markov decision processes.
Quantitative properties such as “what is the probability that
protein A relocates within 2 hours?” or “what is the expected
number of complexations that occur before degradation?”
can be expressed using temporal logics (in this case, CSL
and its extensions). Values for properties are then com-
puted automatically by the tool. PRISM also supports the
stochastic process algebra PEPA (Hillston 1996).

Models to be analysed in PRISM are specified in a
simple, state-based description language. The PRISM mod-
elling language variant that corresponds to PEPA has expres-
sive power similar to the stochastic process calculus, and
therefore can be viewed as an alternative, compositional
language for inducing discrete-state stochastic models of
Section 2.2. However, it is based on multi-waysynchroni-
sationrather than binary channel communication. Figure 5
shows a fragment of the PRISM language code for our
running example, relating to FGFR and its interactions with
FGF and Src. Each system component is described by a
separate module, whose state is represented by a number
of finite-values variables. The stochastic behaviour of each
component is described by a set of guarded commands.
Modules can interact through synchronisation, which is
achieved by annotating commands in two or more modules
with the same label.

PRISM has already been successfully applied to the
modelling and analysis of several biochemical reaction net-
works, such as the Ras/Raf/ERK signalling pathway (Calder
et al. 2006, Calder et al. 2006), cyclin (PRISM 2006) and
FGF (Heath et al. 2006). These case studies demonstrate
the use of PRISM for both population- and individual-based
models. Similarly to theπ-calculus, PRISM models are also
easy to modify at the level of individual molecules or ensem-
bles, for example when formulating an alternative hypothesis
for the mechanism under study, and can be manipulated via
text processing tools. Based on (Eccher 2006), automated
translation of PRISM models from SBML is feasible and
would avoid the difficulties with binary synchronisation.
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module fgfr

fgfr fgf : [0..1] init 0; // FGF bound
fgfr ph1 : [0..1] init 0; // state receptor 1 phosphorylated
fgfr src : [0..1] init 0; // Src bound
reloc fgfr: [0..1] init 0; // FGFR relocated

· · ·
// binding and release of FGF
[bind fgf ] reloc fgfr=0∧fgfr fgf =0→k1 : (fgfr fgf ′=1);
[rel fgf ] reloc fgfr=0∧fgfr fgf =1→k2 : (fgfr fgf ′=0);
// phosphorylation/dephosphorylation (release SRC under dephosphorylation)
[] reloc fgfr=0∧fgfr fgf =1∧fgfr ph1=0 →k3 : (fgfr ph1 ′=1);
[] reloc fgfr=0∧fgfr ph1=1∧fgfr src=0 →k5 : (fgfr ph1 ′=0);
[rel src] reloc fgfr=0∧fgfr ph1=1∧fgfr src=1 →

k5 : (fgfr ph1 ′=0)∧(fgfr src′=0);
// binding and release of Src
[bind src] reloc fgfr=0∧fgfr ph1=1∧fgfr src=0→k7 : (fgfr src′=1);
[rel src] reloc fgfr=0∧fgfr src=1→k8 : (fgfr src1 ′=0);
// relocation (caused by Src)
[] reloc fgfr=0∧fgfr src=1→1/(15*60) : (reloc fgfr ′=1);

endmodule

Figure 5: PRISM Language Description Fragment

4 ANALYSIS TECHNIQUES

4.1 Differential Equations

As described in Section 2.1, continuous deterministic models
of biochemical reaction networks describe the time evolution
of molecular concentrations as a set of coupled ordinary
differential equations (ODEs).

To build the differential equation model for our run-
ning example, we used Cellerator (Shapiro et al. 2003),
a Mathematica-based tool for generating, translating and
solving complex signal transduction networks. Cellerator
supports a convenient input of fundamental biochemical re-
actions with arrow-based notation to represent biochemical
reactions. Examples of chemical formulae recognised by
Cellerator include association, dissociation, synthesis and
degradation, and conversion reactions. Reactions are auto-
matically translated into differential equations based on the
law of mass action or enzymatic kinetic models.

For illustration purposes Figure 6 shows a fragment of
the ODEs automatically generated for our example, relating
to FGFR and its interactions with FGF and Src. Cellerator
also supports solution of these ODEs. Figure 7(a) shows the
results generated for the concentration of relocated FGFR
and Grb2 bound to FGFR over a time period of 4 hours.
We assumed concentrations to be of the order of10−5 M,
which necessitates the rescaling of binary reaction rates by
the same factor. The system of ODEs is solved for initial
conditions of10−5 M for FGF, FGFR, Src and Grb2.

ODE models are particularly suitable for studying events
in a linear pathway mediated by sequential reactions. In-
deed, it is often possible, for small systems of ODEs aris-
ing from simple biochemical networks, to utilise matched
asymptotics and quasi-steady state approximations to de-
velop accurate analytical approximations (Murray 1989).
Our running example is sufficiently simple to be amenable

to such an approach, but we do not illustrate this as such
techniques are not extendable to large systems, which must
be addressed using numerical techniques.

In particular, if we allow parallel molecular state
changes, such as the formation of complexes of multiple
proteins, the complexity of the model significantly increases.
The number of different system-wide states that fully de-
scribe the interactions between different proteins increases
exponentially with the number of participating molecules,
as does the number of equations.

While there exist algorithms capable of solving these
very large systems of ODEs arising from networks of bio-
chemical reactions, they are generally far too inefficient.
This is because the ODEs are usually very stiff, that is the
underlying reactions possess disparate timescales. Stability
requirements for the use of explicit ODE solvers with such
problems enforce an extremely small timestep and thus
an excessively prolonged runtime. Implicit schemes are
even more prohibitive in terms of runtime. An attempt to
circumvent such difficulties is illustrated in (Tokman 2006).

ODE models predict the time course of average val-
ues of concentrations or substance, but their applicability is
limited to cases with large numbers of molecules (on which
the continuous abstraction depends). As we demonstrate
in the next section, averages may be misleading for small
numbers of molecules. On the other hand, ODEs are capa-
ble of modelling complex dynamics, such as higher order
biochemical reactions, and are less dependent on the strong
assumptions of constant volume and temperature.

Many other techniques for analysing systems of ODEs
are also applicable in this domain. Bifurcation theory,
for example, studies the dramatic changes in the solution
behaviour when some parameters undergo a small change,
allowing a modeller to narrow significantly the search for key
dynamical behaviour in the parameter space. Also of interest
is the use of hybrid automata as a computational modelling
formalism for biological systems (Piazza et al. 2005).
Hybrid automata support a combination of continuous and
discrete system dynamics.

4.2 Simulation

For approaches based on discrete stochastic models, the
most common analysis technique is the use of discrete
event Monte Carlo simulation, which evolves the system
over time in order to estimate the quantities of concentrations
of specified complexes. This can be done directly from the
syntactic description of the model, and corresponds to the
algorithm of (Gillespie 1977) for population-based models.
A number of simulation tools exist, including BioSPI (Regev
and Shapiro 2004) and SPiM (Phillips and Cardelli 2005) for
the stochasticπ-calculus, and PRISM simulator for PEPA
and PRISM models (Hinton et al. 2006).
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Fgfr ′0,0(t) = −bindfgf ·Fgf (t)·Fgfr0,0(t) + relfgf ·Fgfr Fgf 0,0(t) + dph1·Fgfr1,0(t) + dph1·Fgfr2,0(t) . . .

Fgfr ′1,0(t) = −bindfgf ·Fgf (t)·Fgfr1,0(t) + relfgf ·Fgfr Fgf 1,0(t)− dph1·Fgfr1,0(t)
−bindsrc·Src(t)·Fgfr1,0(t) + relsrc·Fgfr2,0(t) . . .

Fgfr ′0,1(t) = −bindfgf ·Fgf (t)·Fgfr0,1(t) + relfgf ·Fgfr Fgf 0,1(t) + dph1·Fgfr1,1(t) + dph1·Fgfr2,1(t) . . .

Fgfr ′1,1(t) = −bindfgf ·Fgf (t)·Fgfr1,1(t) + relfgf ·Fgfr Fgf 1,1(t)− dph1·Fgfr1,1(t)
−bindsrc·Src(t)·Fgfr1,1(t) + relsrc·Fgfr2,1(t) . . .

Fgfr ′2,0(t) = −bindfgf ·Fgf (t)·Fgfr2,0(t) + bindsrc·Src(t)·Fgfr1,0(t) + relfgf ·Fgfr Fgf 2,0(t)− relsrc·Fgfr2,0(t)
−reloc·Fgfr Fgf 2,0(t)− dph1·Fgfr Fgf 2,0(t) . . .

Fgfr ′0,2(t) = −bindfgf ·Fgf (t)·Fgfr0,2(t) + relfgf ·Fgfr Fgf 0,2(t) + dph1·Fgfr2,2(t) + dph1·Fgfr1,2(t) . . .

Fgfr ′2,2(t) = −bindfgf ·Fgf (t)·Fgfr2,2(t) + relfgf ·Fgfr Fgf 2,2(t)− relsrc·Fgfr2,2(t)− reloc·Fgfr2,2(t)
−dph1·Fgfr2,2(t) + bindsrc·Src(t)·Fgfr1,2(t) . . .

Fgfr ′2,1(t) = −bindfgf ·Fgf (t)·Fgfr2,1(t) + bindsrc·Src(t)Fgfr Fgf 1,1(t) + relfgf ·Fgfr Fgf 2,1(t)− relsrc·Fgfr2,1(t)
−reloc·Fgfr2,1(t)− dph1·Fgfr2,1(t) . . .

Fgfr ′1,2(t) = −bindfgf ·Fgf (t)·Fgfr1,2(t) + relsrc·Fgfr Fgf 2,2(t) + relfgf ·Fgfr Fgf 1,2(t)− dph1·Fgfr1,2(t)
−bindsrc·Src(t)·Fgfr1,2(t) . . .

In the termsFgfr res1,res2
and Fgfr Fgf res1,res2

the componentsres1 and res2 correspond to two independent
residues of the protein: 0 (unphosphorylated), 1 (phosphorylated) and 2 (bound to Src or Grb2).

Figure 6: Fragment of the Automatically Generated ODEs
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Figure 7: Results of Analysis of the Example: Concentration/Quantity of Two Forms of FGFR over Time

Although useful information about a model can be
extracted from a single random run, to obtain more robust
estimates of the system behaviour over time it is necessary
to average over several simulation runs. These can then be
compared with experimental outcomes. We used BioSPI as
the simulation platform for the stochasticπ-calculus model
of the FGF fragment. The BioSPI system inputs theπ-
calculus code and performs simulations using the Gillespie
algorithm, starting from a given initial state. Figures 7(b) and
7(c) show the results generated for the amount of relocated
FGFR and Grb2 bound to FGFR over a time period of 4
hours, both for a single simulation run and averaged over
10 runs. In each case, we assume an initial population of
100 FGF, FGFR, Src and Grb2 molecules.

In the model for the running example above, Src-
mediated endocytic internalization of FGFR was presumed
to attenuate signalling by relocating and degrading receptor
complex. Recent evidence suggests that FGF-stimulated
signalling can be amplified by internalization (Ware et al.
1997, Frame 2004). Src can alter cell structure, in particular
the actin cytoskeleton, resulting in changes of intracellular
trafficking of Src and FGFR. Src might positively regu-
late FGFR signalling by recruiting non-active FGFR to the
membrane. This can be modelled by adding the following
schematic reaction to the model:

FGFR : Src −→ FGFR : Src + FGFR + Src

and adapting theπ-calculus model appropriately. We change
the initial amount of Src from 100 to 10 molecules in the
π-calculus model and from concentration10−5 M to 10−6

M in the ODE model (all other initial conditions remain the
same as before). Figure 8 shows plots of the amount of Grb2
bound to FGFR. In this case, the ODE result disagrees with
averaged simulation runs from theπ-calculus model. This
is because the stochastic approach is more accurate when
the number of molecules is small and the behaviour of the
reaction system becomes non-continuous. The behaviour
of the ODE model differs because Src cannot be totally
degraded (the degradation is balanced by the formation of
new Src), whereas in the stochastic model the random walk
of Src, which starts at 10, can easily lead to 0.
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Figure 8: An Extended Example Demonstrating the Differ-
ence between ODE and Stochastic Modelling Results

Monte Carlo simulation techniques can be implemented
efficiently. However, it is well known that the number of
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runs that need to be generated is quadratic in the inverse
of the desired accuracy. Thus, obtaining accurate approxi-
mations can be costly. In particular, this is unavoidable if
the quantities concerned are very small. In systems with
considerably differing timescales, which is the case in bio-
chemical networks, long-run average properties cannot be
obtained with simulation. Alternative algorithms, e.g., as
supported by StochSim (Novère and Shimizu 2001), can
simulate individual molecules and their spatial arrangement.

4.3 Verification

For discrete-state stochastic models, an alternative to Monte
Carlo simulation isformal verification, and in particular, in
this context, probabilistic model checking. This approach
proceeds by first building a representation of the underlying
continuous-time Markov chain, usually in some compact
form, followed by exhaustive exploration of the paths of
the system in order to produce answers toquantitative
temporal queries expressible in temporal logic. Note that
this differs from simulation approaches, which can generate
system trajectories from the syntax of model description.
The properties include the probability of an event, transient
probability of an event (i.e., at a particular time instant),
long-run probability, or expectation.

Probabilistic model checking tools, such as PRISM,
compute values for these quantitative properties using nu-
merical solution algorithms, typically based on iterative
methods. Usually computation reduces to the problem of
solving a system of linear equations, for which well-known
efficient iterative methods such as Gauss-Seidel exist. How-
ever for transient probabilities, an iterative method known
as uniformisation is used, which is based on discretisation.
For more information see e.g., (Rutten et al. 2004).

In Figure 7(d) we show, similarly to the previous two
sections, experimental results for the amount of relocated
FGFR and Grb2 bound to FGFR. Here, the results have
been generated with PRISM for the case when there is one
molecule of each species, and hence we have plotted the
probability of FGFR being relocated and Grb2 being bound.

The main obstacle associated with probabilistic model
checking (and formal verification in general) is the state-
space explosion, i.e., that the parallel composition ofN
components (molecules) leads to systems whose state space
is exponential inN . State-of-the-art techniques developed in
the area enable the analysis of systems with billions of states.
These includesymbolicmethods, using sophisticated data
structures based on binary decision diagrams (BDDs) and
techniques such as symmetry reduction (Kwiatkowska et al.
2006), which in the biological setting actually corresponds
to employing the population based approach, as well as
using an abstract notion of quantities (Calder et al. 2006).

Returning to our running example, the state space ex-
plosion problem can be seen when increasing the number

of molecules of each type; for example, increasing this
number from 1 to 5 leads to an increase in the state space
from 22 to 4,568,094. On the other hand, using symmetry
reduction or employing the population based approach, we
have, for the case of 5 molecules of each type, a reduction
in the state space from 4,568,094 to 63,756.

Figure 9 presents further results obtained with PRISM:
both the expected number of reactions of a certain type and
the expected time a complex is present by timeT .
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Figure 9: Further PRISM Results

Below we include a number of long-run properties
analysed using probabilistic model checking with PRISM.

• The probability that FGF, Src or Grb2 is free when
FGFR degrades equals 4.0e-7, 0 and 0.50660 re-
spectively. The probability for Src is 0 because
Src must be bound for FGFR to degrade. The val-
ues for FGF and Grb2 are justified as FGF binds
quickly and is released slowly, whereas the binding
and release of Grb2 happens at the same rate.

• The expected number of phosphorylations of type
1 and 2 before FGFR degrades equal 92.09 and
91.84. The expected number is higher for type 1
because type 1 must occur for FGFR to degrade.

• The expected time until FGFR degrades is 30.53
minutes and the expected time that FGF, Src or Grb2
spend bound to FGFR before degradation equals
30.53, 15.00 and 15.04 minutes respectively. This
shows that FGF is bound for most of the time that
FGFR is present and can be attributed to the fact that
FGF binds quickly and is released slowly. Src and
Grb2 spend roughly half the time bound because
their complexation and decomplexation rates are
the same. Grb2 is bound for slightly longer than
Src because, the binding of Src causes degradation.

We demonstrate further quantitative properties that can be
automatically verified using PRISM with the help of the
full FGF pathway studied in (Heath et al. 2006), see also
(PRISM 2006). The full pathway additionally includes the
following elements: FRS2, Plc, Spry, Sos, Cbl and Shp2.
We were able to verify, amongst others:

• “The expected time Grb2 spends bound to FRS2
before either degradation or relocation occurs.”
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• “The expected number of times Grb2 binds to FRS2
before either degradation or relocation occurs.”

• “The probability that each possible cause of degra-
dation/relocation occurs first.”

For illustration, the graph in Figure 10 shows the amount
of Grb2 bound to FRS2 (not included in the running ex-
ample). The plots show the result of ourin silico genetics
experimentation, that is, how the variation in quantity is
affected by the removal of certain key components.
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Figure 10: The Variation in the Amount of Grb2 Bound to
FRS2 in the Full FGF Pathway Model

As illustrated above, automatic verification techniques
can greatly enhance the range of analyses possible for bio-
chemical networks. Verification is based on an exploration
of the full model, and is therefore able to inspect the
temporal relationships between events in fine detail, and in
particular detect ‘corner cases’ such as unwanted deadlocks.
Related work of interest in this area is a technique from
the tool Simpathica (Antoniotti et al. 2003) which evalu-
ates temporal logic queries against a set of system traces
obtained through simulation. For quantitative verification,
probabilistic model checking is, based on the quality of
the data provided, (numerically) exact, as opposed to sim-
ulation which produces estimates, and can automatically
identify scenarios that yield best/worst case answers. Note
that discrete quantities (such as expected bindings) cannot
be obtained with ODE models. However, the size of the
resulting models is at present a limitation on applicability
of automatic verification techniques.

5 CONCLUSIONS

In this paper we gave an overview of the ODE, simulation
and verification approaches to the analysis of biochemi-
cal reaction networks. Such networks can be described
in SBML, and the corresponding ODE or discrete-state
models generated automatically, subject to certain restric-
tions. The ODE models are continuous and deterministic
with respect to average concentrations, and while this ad-
mits complex dynamics and a broad range of solvers, the
approach cannot handle small numbers of molecules and
discrete quantities such as expected number of bindings.
Discrete event simulation can be applied to generate time
trajectories of approximate reactant quantities directly from

their syntactic representation. This method is inefficient if
the quantities are very small, and not feasible for long-run
averages, though, on the other hand, it is easy to parallelise.
Automatic verification techniques aim to produce a detailed
analysis of the causal and temporal relationships between
events in the model, which necessitates the construction of
the full model and its systematic exploration. This approach
supports a wide range of qualitative and quantitative tempo-
ral queries, is exact and can produce best/worst case answers
and the corresponding scenarios. However, Monte Carlo
simulation and ODEs can tackle a larger class of models.
The size of the resulting models remains the main limi-
tation of the automatic verification approaches, motivating
the need for research into compositional reasoning.

ACKNOWLEDGMENTS

This work is part-sponsored by EPSRC grants GR/S46727,
GR/S11107 and Integrative Biology (GR/S72023), Mi-
crosoft Research Cambridge contract MRL 2005-04, and
by a programme from Cancer Research UK.

REFERENCES

Antoniotti, M., A. Policriti, N. Ugel, and B. Mishra. 2003.
Model building and model checking for biochemical
processes.Cell Biochemistry and Biophysics38.

Calder, M., S. Gilmore, and J. Hillston. 2006. Modelling the
influence of RKIP on the ERK signalling pathway using
the stochastic process algebra PEPA.Transactions on
Computational Systems Biology4230.

Calder, M., V. Vyshemirsky, D. Gilbert, and R. Orton. 2006.
Analysis of signalling pathways using continuous time
Markov chains.Transactions on Computational Systems
Biology 4220.

Cardelli, L., and A. Phillips. 2004. A correct abstract ma-
chine for the stochastic pi-calculus. InProceedings of
BioConcur’04.

Eccher, C. 2006.Translation of Systems Biology Markup
Language into process algebra. Ph. D. thesis.

Frame, M. 2004. Newest findings on the oldest oncogene;
how activated Src does it.Journal of Cell Science117.

Gillespie, D. 1977. Exact stochastic simulation of coupled
chemical reactions.Journal of Physical Chemistry81
(25).

Heath, J., M. Kwiatkowska, G. Norman, D. Parker, and
O. Tymchyshyn. 2006. Probabilistic model checking
of complex biological pathways. InProc. International
Conference on Computational Methods in Systems Bi-
ology, Volume 4210 ofLNBI: Springer.

Hillston, J. 1996.A compositional approach to performance
modelling. Cambridge University Press, Cambridge.

Hinton, A., M. Kwiatkowska, G. Norman, and D. Parker.
2006. PRISM: A tool for automatic verification of prob-



Kwiatkowska, Norman, Parker, Tymchyshyn, Heath and Gaffney

abilistic systems. InProc.12th. International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems, Volume 3920 ofLNCS: Springer.

Kwiatkowska, M., G. Norman, and D. Parker. 2006. Sym-
metry reduction for probabilistic model checking. In
Proc. 18th International Conference on Computer Aided
Verification, Volume 4144 ofLNCS: Springer-Verlag.

Murray, J. 1989.Mathematical biology. Springer Verlag.
Novère, N. L., and T. Shimizu. 2001. Stochsim: modelling of

stochastic biomolecular processes.Bioinformatics17.
Phillips, A., and L. Cardelli. 2005. A graphical represen-

tation for the stochastic pi-calculus. InProceedings of
Bioconcur’05.

Piazza, C., M. Antoniotti, V. Mysore, A. Policriti, F. Win-
kler, and B. Mishra. 2005. Algorithmic algebraic model
checking i: Challenges from systems biology. InProc.
17th International Conference on Computer Aided Ver-
ification, Volume 3576 ofLNCS.

Priami, C., A. Regev, E. Shapiro, and W. Silverman. 2001.
Application of a stochastic name-passing calculus to
representation and simulation of molecular processes.
Information Process Letters80.

PRISM 2006.<www.cs.bham.ac.uk/dxp/prism> .
Regev, A., and E. Shapiro. 2002. Cells as computation.

Nature419.
Regev, A., and E. Shapiro. 2004. The pi-calculus as an

abstraction for biomolecular systems. InModelling in
Molecular Biology: Springer.

Rutten, J., M. Kwiatkowska, G. Norman, and D. Parker.
2004.Mathematical techniques for analyzing concur-
rent and probabilistic systems, Volume 23 of CRM
Monograph Series. American Mathematical Society.

SBML 2006.<http://sbml.org/index.psp> .
Shapiro, B., A. Levchenko, E. Meyerowitz, B. Wold, and

E. Mjolsness. 2003. Cellerator: extending a computer
algebra system to include biochemical arrows for signal
transduction simulations.Bioinformatics19 (5).

Tokman, M. 2006. Efficient integration of large stiff systems
of ODEs with exponential propagation iterative (EPI)
methods.Journal of Computational Physics213.

Ware, M., D. Tice, S. Parsons, and D. Lauffenburger. 1997.
Overexpression of cellular Src in fibroblasts enhances
endocytic internalization of Epidermal Growth Factor
receptor.Journal of Biological Chemistry272.

Wolkenhauer, O., M. Ullah, W. Kolch, and K. Cho. 2004.
Modeling and simulation of intracellular dynamics:
choosing an appropriate framework.IEEE Transactions
on Nanobioscience3.

Yamada, S., T. Taketomi, and A. Yoshimura. 2004. Model
analysis of difference between EGF pathway and FGF
pathway.Biochemical and Biophysical Research Com-
munications314.

AUTHOR BIOGRAPHIES

MARTA KWIATKOWSKA is Professor of Computer Sci-
ence in the University of Birmingham, UK. Her research is
mainly concerned with developing modelling frameworks
and novel methods for analysing large complex systems,
especially automatic verification techniques. She led devel-
opment of the state-of-the-art probabilistic model checker
PRISM and is on the Editorial Board of Transactions on
Computational Systems Biology and Logical Methods in
Computer Science. Email:<mzk@cs.bham.ac.uk> ,
webpage:<www.cs.bham.ac.uk/˜mzk> .

GETHIN NORMAN is Research Fellow in the School
of Computer Science in the University of Birmingham,
UK, and holds a BSc from Oxford University and PhD
from the University of Birmingham. He has made a sub-
stantial contribution to the development of the modelling
and verification techniques that underpin PRISM and has
carried out many modelling case studies, including verifica-
tion of FGF. Email:<gxn@cs.bham.ac.uk> , webpage:
<www.cs.bham.ac.uk/˜gxn> .

DAVID PARKER is Research Fellow in the School of Com-
puter Science in the University of Birmingham, UK, who ob-
tained his BSc and PhD from the University of Birmingham.
His PhD thesis was runner up in the 2003 BCS Distinguished
Dissertation Awards. He implemented the PRISM model
checker and is author of several novel techniques, such as
symmetry reduction. Email:<dxp@cs.bham.ac.uk> ,
webpage:<www.cs.bham.ac.uk/˜dxp> .

OKSANA TYMCHYSHYN is a PhD student in the
School of Computer Science in the University of Birm-
ingham, UK. Her research is part of the Integrative Biology
project (www.integrativebiology.ox.ac.uk ) and
concerns modelling signalling pathways and their influence
on colon crypt development. E-mail:<oxt@cs.bham.
ac.uk> , webpage:<www.cs.bham.ac.uk/˜oxt> .

JOHN HEATH is Professor and Head of School of Bio-
sciences in the University of Birmingham, UK. His lab
is working on the specificity and dynamics of the inter-
action between growth factors and their receptors, and
especially growth factor signalling in cancer. Email:
<j.k.heath@bham.ac.uk> .

EAMONN GAFFNEY is Lecturer in the School of Math-
ematics in the University of Birmingham, UK. He works
on mathematical models of tumours, signalling pathways
and cell movement, and has contributed an ODE model of
FGF. Email:<eag@for.mat.bham.ac.uk> , webpage:
<web.mat.bham.ac.uk/E.A.Gaffney> .


