Towards verification of Bluetooth device discovery

Marie Duflot

Outline

- Description of the protocol
- Modelling
- First results
- We want more

Description of the protocol

Protocol overview

- short-range low-power wireless protocol
- frequency hopping over 79/32 frequencies

Protocol overview

- short-range low-power wireless protocol
- frequency hopping over 79/32 frequencies
> need to form piconets
- processes know when to send/receive
- processes know the hopping frequency
- master-slave roles

Protocol overview

- short-range low-power wireless protocol
- frequency hopping over 79/32 frequencies
> need to form piconets
- processes know when to send/receive
- processes know the hopping frequency
- master-slave roles
> no communication before initialisation

Protocol overview

- short-range low-power wireless protocol
- frequency hopping over 79/32 frequencies
$>$ need to form piconets
- processes know when to send/receive
- processes know the hopping frequency
- master-slave roles
> no communication before initialisation

First mandatory step: device discovery

States of a Bluetooth device

Standby: default operational state
Connected: device ready to communicate in a piconet

Inquiry (version 1.2)

Inquiry (version 1.2)

- Inquiry

Inquiry Scan
O Inquiry Response

Inquiry (version 1.2)

- Inquiry

Inquiry Scan
O Inquiry Response

Inquiry (version 1.2)

- Inquiry

Inquiry Scan
O Inquiry Response

Inquiry (version 1.2)

$$
\begin{array}{ll}
& \text { ORand2 } \\
\text { Rand1 } \bigcirc & \\
& \\
& \text { O Inquiry } \\
& \text { O Inquiry Scan } \\
& \\
& \text { Inquiry Response }
\end{array}
$$

Inquiry (version 1.2)

Rand1 < Rand2
\bigcirc

- Inquiry

Inquiry Scan
Inquiry Response

Inquiry (version 1.2)

- Inquiry

Inquiry Scan
O Inquiry Response

The sender

The sender

$$
\begin{aligned}
& \text { freq }=\left[C L K_{16-12}+k\right. \\
& \left.+\left(C L K_{4-2,0}-C L K_{16-12}\right) \bmod 16\right] \bmod 32
\end{aligned}
$$

The sender

$$
\begin{aligned}
& \text { freq }=\left[C L K_{16-12}+k\right. \\
& \left.+\left(C L K_{4-2,0}-C L K_{16-12}\right) \bmod 16\right] \bmod 32
\end{aligned}
$$

The receiver

- [request]: message sent by the sender
- [reply]: message sent by the receiver
- need to compute the frequency at which the receiver is listening (phase)
- phase increased by one each time the receiver replies

Modelling the protocol

Modelling formalism

- randomised back-off
> need probabilistic model
- discrete time slots
- no nondeterminism
> no nondeterministic choice within a device
> full synchronisation between devices
\rightarrow discrete-time Markov Chains (DTMCs)

Constants from Bluetooth standard

- Sender changes state every time slot
- Receiver can wait for 2012 time slots without changing state
- 2 trains of 16 frequencies
- The trains change with time
- A train is repeated 256 times before switching
- The phase changes every 4096 slots
> a HUGE model
> Too many possible initial states

Receiver's frequencies

module frequency1

```
z1 : [1..phase];// clock for phase
f1 : [1..16]; // frequency of receiver
o1 : [0..1]; // offset of receiver
// update frequency (1 slot passes)
[time] z1<phase -> (z1'=z1+1);
[time] z1=phase -> (z1'=1) & (f1'=f1<16?f1+1:1)& (o1'=f1<16?o1:1-o1);
// update frequency: something is sent by the receiver
[reply] true -> (f1'=(f1<16)?f1+1:1) & (o1'=(f1<16)?o1:1-o1);
```

endmodule

Abstractions (1): the sender

$$
\begin{aligned}
& \text { [time] }(x=0)->\left(x^{\prime}=1\right) ; \\
& {[](x=1) \&(\text { send }=1) ~->\left(\text { send }{ }^{\prime}=2\right) ;}
\end{aligned}
$$

Abstractions (1): the sender

```
[time] (x=0) -> (x'=1) ;
[] (x=1) & (send=1) -> (send'=2) ;
    V
[time] (send=1) -> (send'=2) ;
```


Abstractions (1): the sender

```
[time] (x=0) -> (x'=1) ;
[](x=1) & (send=1) -> (send'=2) ;
    V
[time] (send=1) -> (send'=2) ;
```

- no clock for the sender
- sender totally deterministic

Abstractions (2): the receiver

- Initial execution:

Abstractions (2): the receiver

- Initial execution:

- Merge consecutive sleep transitions into one

Abstractions (2): the receiver

- Initial execution:

- Merge consecutive sleep transitions into one

- Formula success: decides if the receiver is going to hear something.
> Merge scan with sleep when hears nothing

\rightarrow works only for one receiver

Abstractions (3): starting point

Abstractions (3): starting point

- need to fix a scenario
- sender's state entirely determined by its clock
> doesn't start inquiring in a precise state
- receiver's point of view
> a sender is already inquiring
> we start when the receiver scans

Abstractions (3): starting point

- need to fix a scenario
- sender's state entirely determined by its clock
$>$ doesn't start inquiring in a precise state
- receiver's point of view
> a sender is already inquiring
> we start when the receiver scans
But ... still 17 thousand million initial states

Verifi cation and Results

Verification with PRISM

Model checking vs. simulation

- examine lower-level detail
- worst case, not only average

New version of PRISM including:

- computation of expected time
[label,cost] condition -> update
$\mathrm{R}=$? [F rec=2]
- multiple initial states

Predicate over variables vs. a value for each variable

- additional queries for results over many states

$$
\mathrm{R}=? \quad[\mathrm{~F} \text { rec=2 }\{\text { "init" }\}\{\min \}\{\max \}]
$$

Expected time to receive one reply

- Very big models \rightarrow symbolic implementation (MTBDDs)
- Initial states split into 32 classes (possible initial frequencies)
- 32 models of around 3 thousand million states each
- 55-57 seconds to build one model
- 3-4 seconds to check the property

Graph of the results

Analysis of the results

- Time to reply to one message: $\min 2, \max 8,229$ slots (2.5 seconds)
- probability of replying to message after sleeping N times

N	0	1	2	3	4
p	0.5003	0.6335	0.7591	0.8797	1

- Analysis of the worst case expected time

$$
\begin{aligned}
& 12320212223242526272829303132 \\
& 171819205678910111213141516 \\
& 1718192021678910111213141516 \\
& 12345623242526272829303132
\end{aligned}
$$

> sender starts on frequency 3
> receiver starts on frequency 2
> last repetition of the train

Expected time to receive two replies

- Size of the models: 51 thousand million states
- Time to build the models: 30 minutes
- Time to check the property: 80 minutes
- Maximum expected time: 16,502 slots (5 seconds)

It's not over yet!!!

- Count up to more replies
- Consider more than one receiver
- Compare version 1.1 and 1.2

It's not over yet!!!

- Count up to more replies
- Consider more than one receiver
- Compare version 1.1 and 1.2

Problem:

State space!!!

It's not over yet!!!

- Count up to more replies
- Consider more than one receiver
- Compare version 1.1 and 1.2

Problem:

State space!!!

Solutions:

- Simulation?
- Scaling?
- Abstraction?

